CamShift算法,OpenCV实现(3):CamShift算法 (转载)

  1.原理
在了解了MeanShift算法以后,我们将MeanShift算法扩展到连续图像序列(一般都是指视频图像序列),这样就形成了CamShift算法。CamShift算法的全称是"Continuously Apaptive Mean-SHIFT",它的基本思想是视频图像的所有帧作MeanShift运算,并将上一帧的结果(即Search Window的中心和大小)作为下一帧MeanShift算法的Search Window的初始值,如此迭代下去,就可以实现对目标的跟踪。整个算法的具体步骤分5步:
Step 1:将整个图像设为搜寻区域。
Step 2:初始话Search Window的大小和位置。
Step 3:计算Search Window内的彩色概率分布,此区域的大小比Search Window要稍微大一点。
Step 4:运行MeanShift。获得Search Window新的位置和大小。
Step 5:在下一帧视频图像中,用Step 3获得的值初始化Search Window的位置和大小。跳转到Step 3继续运行。

2.实现
在OpenCV中,有实现CamShift算法的函数,此函数的原型是:
  cvCamShift(IplImage* imgprob, CvRect windowIn,
                CvTermCriteria criteria, 
                CvConnectedComp* out, CvBox2D* box=0);
其中:
   imgprob:色彩概率分布图像。
   windowIn:Search Window的初始值。
   Criteria:用来判断搜寻是否停止的一个标准。
   out:保存运算结果,包括新的Search Window的位置和面积。
   box:包含被跟踪物体的最小矩形。

说明:
1.在OpenCV 4.0 beta的目录中,有CamShift的例子。遗憾的是这个例子目标的跟踪是半自动的,即需要人手工选定一个目标。

你可能感兴趣的:(算法,search,扩展)