Python图像处理(5):直方图

快乐虾

http://blog.csdn.net/lights_joy/

欢迎转载,但请保留作者信息


直方图的计算采用OpenCVcalcHist完成。


OpenCVC++接口中calcHist有三种形式:


//! computes the joint dense histogram for a set of images.
CV_EXPORTS void calcHist( const Mat* images, int nimages,
                          const int* channels, InputArray mask,
                          OutputArray hist, int dims, const int* histSize,
                          const float** ranges, bool uniform=true, bool accumulate=false );

//! computes the joint sparse histogram for a set of images.
CV_EXPORTS void calcHist( const Mat* images, int nimages,
                          const int* channels, InputArray mask,
                          SparseMat& hist, int dims,
                          const int* histSize, const float** ranges,
                          bool uniform=true, bool accumulate=false );

CV_EXPORTS_W void calcHist( InputArrayOfArrays images,
                            const vector<int>& channels,
                            InputArray mask, OutputArray hist,
                            const vector<int>& histSize,
                            const vector<float>& ranges,
                            bool accumulate=false );

但导出的Python接口却只有一个:

static PyObject* pyopencv_calcHist(PyObject* , PyObject* args, PyObject* kw)
{
    PyObject* pyobj_images = NULL;
    vector_Mat images;
    PyObject* pyobj_channels = NULL;
    vector_int channels;
    PyObject* pyobj_mask = NULL;
    Mat mask;
    PyObject* pyobj_hist = NULL;
    Mat hist;
    PyObject* pyobj_histSize = NULL;
    vector_int histSize;
    PyObject* pyobj_ranges = NULL;
    vector_float ranges;
    bool accumulate=false;

    const char* keywords[] = { "images", "channels", "mask", "histSize", "ranges", "hist", "accumulate", NULL };
    if( PyArg_ParseTupleAndKeywords(args, kw, "OOOOO|Ob:calcHist", (char**)keywords, &pyobj_images, &pyobj_channels, &pyobj_mask, &pyobj_histSize, &pyobj_ranges, &pyobj_hist, &accumulate) &&
        pyopencv_to(pyobj_images, images, ArgInfo("images", 0)) &&
        pyopencv_to(pyobj_channels, channels, ArgInfo("channels", 0)) &&
        pyopencv_to(pyobj_mask, mask, ArgInfo("mask", 0)) &&
        pyopencv_to(pyobj_hist, hist, ArgInfo("hist", 1)) &&
        pyopencv_to(pyobj_histSize, histSize, ArgInfo("histSize", 0)) &&
        pyopencv_to(pyobj_ranges, ranges, ArgInfo("ranges", 0)) )
    {
        ERRWRAP2( cv::calcHist(images, channels, mask, hist, histSize, ranges, accumulate));
        return pyopencv_from(hist);
    }

    return NULL;
}

因此Python的接口看起来有点奇怪:

hist = cv2.calcHist([src], [0], None, [256], [0, 255])

即使是只对一张图片进行操作,也必须使用数组的形式进行参数传递。


写个简单的Python程序,获取单个通道的直方图:

# -*- coding: utf-8 -*- 
import cv2
import numpy as np
import matplotlib.pyplot as plt

# 单通道直方图测试

src = cv2.imread('f:\\tmp\\cotton.jpg')
cv2.imshow('src', src)

hist = cv2.calcHist([src], [0], None, [256], [0, 255])
plt.plot(hist)
plt.show()

cv2.waitKey()

结果如下:

Python图像处理(5):直方图_第1张图片

符合我们对直方图的预期。














你可能感兴趣的:(python,opencv,图像处理,VS2013)