- Python librosa模块介绍
骚火棍
人生苦短我用Pythonlibrosa
librosa语音信号处理模块参考链接:https://www.cnblogs.com/LXP-Never/p/11561355.html
- 嵌入式人工智能实验方向
周南音频科技教育学院(AI湖湘学派)
AI深度学习理论与实践研究音频算法设计研究开发音频算法人工智能神经网络
加我微信hezkz17进嵌入式人工智能研究开发交流答疑群。1可在stm32,esp32,NXP,arduino,树莓派上部署人工智能模型,图像理解,图像分类。2采用BESSOC部署深度学习语音信号处理算法,降噪算法3根据公式用C语言实现卷积CNN,或者采用开源的嵌入式机器学习,嵌入式深度学习,嵌入式神经网络开源sdk,移植,部署到MCU或者SOC,
- 操作系统复习总结——文件管理
是dream
操作系统操作系统文件管理
博客主页:是dream系列专栏:深度学习环境搭建、环境配置问题解决、自然语言处理、语音信号处理、项目开发每日语录:但愿每次回忆,对生活都不感到负疚。感谢大家点赞收藏⭐指正✍️目录一、文件管理概述1、文件基本概念(1)定义(2)基本调度单位(3)文件结构2、文件控制块与索引节点(1)文件属性(2)文件控制块(FCB)(3)索引结点3、文件的操作(操作系统向上提供哪些功能?)4、文件保护(1)加以控制
- 频谱细化-----CZT算法介绍及MATLAB实现
YHCANDOU
频谱细化matlab算法开发语言
CZT变换采用FFT算法可以很快算出全部N点DFT值,即Z变换X(z)X\left(z\right)X(z)在Z平面单位圆上的全部等间隔取样值。实际中,也许不需要计算整个单位圆上Z变换的取样,如对于窄带信号,只需要对信号所在的一段频带进行分析,这时希望频谱的采样集中在这一频带内,以获得较高的分辨率,而频带以外的部分可不考虑,或者对其他围线上的Z变换取样感兴趣,例如语音信号处理中,需要知道Z变换的极
- MATLAB环境下一种音频降噪优化方法—基于时频正则化重叠群收缩
哥廷根数学学派
信号处理小波分析图像处理语音识别人工智能
语音增强是语音信号处理领域中的一个重大分支,这一分支已经得到国内外学者的广泛研究。当今时代,随着近六十年来的不断发展,己经产生了许多有效的语音增强算法。根据语音增强过程中是否利用语音和噪声的先验信息,语音增强算法一般被归类为两类,一类是无先验信息的语音增强算法,另外一类则是具有先验信息的语音增强算法。在第一类无先验信息语音增强算法中,比较常用的语音增强算法有谱减算法、基于统计模型的算法、基于信号子
- 深度学习环境搭建——利用anaconda+pytorch搭建自己的深度学习环境(以YOLOv5环境搭建为例)2023.9.26最新
是dream
深度学习环境搭建深度学习pytorchYOLO
博客主页:是dream系列专栏:深度学习环境搭建、环境配置问题解决、自然语言处理、语音信号处理、项目开发每日语录:要有最朴素的生活和最遥远的梦想,即使明天天寒地冻,山高水远,路远马亡。感谢大家点赞收藏⭐指正✍️前言相信大家在搭建自己的深度学习环境时总会遇到各种问题,特别是小白。记得第一次配置自己的深度学习环境时,什么anaconda、pytorch,我都不知道这些东西是干嘛的,就知道一个YOLO,
- 音视频开发成长之路与音视频知识总结
徐福记456
音视频开发音视频开发基础音视频进阶成长音视频工作方向音视频开源库流媒体协议与音视频书籍
音视频涉及语音信号处理、数字图像处理、信息论、封装格式、编解码、流媒体协议、网络传输、渲染、算法等。在现实生活中,音视频扮演着越来越重要的角色,比如视频会议、直播、短视频、播放器、语音聊天等。因此,从事音视频是一件比较有意义的事情,机遇与挑战并存。本文将从几个维度进行介绍:音视频开发基础、音视频进阶成长、音视频工作方向、音视频开源库、流媒体协议与书籍。目录一、音视频开发基础1、音频基础2、通用基础
- 音频筑基:巴克谱和梅尔谱辨析
来知晓
语音处理音视频
音频筑基:巴克谱和梅尔谱辨析是什么深入了解相关参考在音频信号处理中,巴克谱和梅尔谱是我们经常遇到的概念,也是语音处理中常用到的频域特征,这里谈谈自己对它们的理解。是什么巴克谱又称BarkSpectrum,梅尔谱又称MelSpectrum,其中异同梳理如下:相同点:Bark谱和Mel谱都是将线性频谱映射到非线性谱上的表征,根据不同频带的感知能力来划分,但它们的核心思想不同。这两种谱都是语音信号处理中
- 基于sy3130光感入耳检测功能成功实现
周南音频科技教育学院(AI湖湘学派)
音频算法设计研究开发算法
基于sy3130光感入耳检测功能成功实现是否需要申请加入数字音频系统研究开发交流答疑群(课题组)?可加我微信hezkz17,本群提供音频技术答疑服务,+群赠送语音信号处理降噪算法,蓝牙耳机音频,DSP音频项目核心开发资料,1芯片介绍2电路实现3寄存器列表
- 低信噪比环境下的语音端点检测
jUicE_g2R
经验模态分解EMD语音识别语言信号处理低信噪比matlab
端点检测技术是语音信号处理的关键技术之一为提高低信噪比环境下端点检测的准确率和稳健性,提出了一种非平稳噪声抑制和调制域谱减结合功率归一化倒谱距离的端点检测算法1端点检测1-1定义定义:在存在背景噪声的情况下检测出语音的起始点和结束点(这里的重点是噪声环境下语音信号的处理)1-2应用需求应用于语音信号处理:语音增强、语音识别、编码和传输需求是:人们希望在远场或者嘈杂的环境中也能用语音控制智能设备,因
- 【Matlab语音加密】语音信号加密解密(带面板)【含GUI源码 181期】
Matlab佛怒唐莲
Matlab完整代码Matlab语音处理matlab语音识别开发语言
一、代码运行视频(哔哩哔哩)【Matlab语音加密】语音信号加密解密(带面板)【含GUI源码181期】二、matlab版本及参考文献1matlab版本2014a2参考文献[1]韩纪庆,张磊,郑铁然.语音信号处理(第3版)[M].清华大学出版社,2019.[2]柳若边.深度学习:语音识别技术实践[M].清华大学出版社,2019.[3]李波,张晓力,石旭.基于Matlab的语音信号加密处理[J].信息
- 【Matlab语音处理】汉宁窗FIR陷波滤波器语音信号加噪去噪【含GUI源码 1711期】
Matlab佛怒唐莲
Matlab完整代码Matlab语音处理matlab语音识别开发语言
一、代码运行视频(哔哩哔哩)【Matlab语音处理】汉宁窗FIR陷波滤波器语音信号加噪去噪【含GUI源码1711期】二、matlab版本及参考文献1matlab版本2014a2参考文献[1]韩纪庆,张磊,郑铁然.语音信号处理(第3版)[M].清华大学出版社,2019.[2]柳若边.深度学习:语音识别技术实践[M].清华大学出版社,2019.[3]尹学爱,马国利,冯伟伟.基于MATLAB的声音信号频
- 语音信号处理共振峰
H_uer
语音信号处理基础
窄带语谱图和宽带语谱图首先,什么是语谱图。最通常的,就是语音短时傅里叶变换的幅度画出的2D图。之所以是通常的,是因为可以不是傅里叶变换。“窄带”,顾名思义,带宽小,则时宽大,则短时窗长,窄带语谱图就是长窗条件下画出的语谱图。“宽带”,正好相反。至于“横竖条纹”,窄带语谱图的带宽窄,那么在频率上就“分得开”,即能将语音各次谐波“看得很清楚”,即表现为“横线”。“横”就体现出了频率分辨率高。分辨率可以
- 语音信号处理-基本概念(二):音频通道数、采样频率、采样位数、采样个数(样本数)、一帧音频的大小、每秒播放的音频字节大小、一帧的播放时长、音频重采样
u013250861
Audio音视频语音识别人工智能
对于下面data和linesize的解释(参考下面3.4中的av_samples_alloc_array_and_samples函数说明):data是通道的意思,例如双通道,data[0]代表左声道,data[1]代表右声道。linesize为采样个数的最大大小字节空间。例如aac,64位,双通道,则对于交错模式最大为:linesize=2x1024x8=16384。此时也是一个音频帧的大小。对于
- 用Matlab进行语音信号处理
后端架构小白
matlab信号处理语音识别
用Matlab进行语音信号处理语音信号处理是数字信号处理中的一个重要分支,主要涉及语音信号的采集、压缩、去噪、降噪等处理。Matlab是一个强大的数学计算工具,也是语音信号处理中常用的工具之一。本文将介绍如何使用Matlab对语音信号进行采集、去噪和压缩处理。语音信号采集语音信号采集需要使用麦克风或其他音频输入设备。在Matlab中,可以使用audiorecorder函数进行音频采集。下面的代码演
- 语音信号处理——噪声抑制
DEDSEC_Roger
信号处理音频
简介噪声抑制技术用于消除背景噪声,改善语音信号的信噪比和可懂度,让人和机器听的更清楚常见的噪声种类:人声噪声、街道噪声、汽车噪声噪声抑制方法的分类:按照输入通道数分:单通道降噪、多通道降噪按照噪声统计特性分:平稳噪声抑制、非平稳噪声抑制按照降噪方法分:被动降噪、主动降噪下面介绍的方法用于单通道的、被动的、平稳噪声抑制MinimaControlledRecursiveAveraging(MCRA)传
- 语音信号处理:librosa
智慧医疗探索者
AI数字人技术音视频处理信号处理语音识别librosa
1librosa介绍Librosa是一个用于音频和音乐分析的Python库,专为音乐信息检索(MusicInformationRetrieval,MIR)社区设计。自从2015年首次发布以来,Librosa已成为音频分析和处理领域中最受欢迎的工具之一。它提供了一套清晰、高效的函数来处理音频信号,并提取音乐和音频中的信息。Librosa在音乐和音频分析方面提供了强大而灵活的工具,适用于从基础研究到实
- 如何理解短时傅里叶变换(Short Time Fourier Transform, STFT)
林深迷了鹿
语音信号处理语音识别机器学习人工智能
因为最近一直在学习语音信号的处理,看了HaythamFayek的一篇博客后关于什么是傅里叶变换感到很迷惑,所以就专门写下一篇文章,整理一下我从网页上搜集的内容。短时傅里叶变换(ShortTimeFourierTransform,STFT)是一个用于语音信号处理的通用工具.它定义了一个非常有用的时间和频率分布类,其指定了任意信号随时间和频率变化的复数幅度.实际上,计算短时傅里叶变换的过程是把一个较长
- HMM(Hidden Markov Model)详解——语音信号处理学习(三)(选修一)
LotusCL
声音信号处理学习信号处理学习语音识别人工智能
参考文献:SpeechRecognition(Option)-HMM哔哩哔哩bilibili2020年3月新番李宏毅人类语言处理独家笔记HMM-6-知乎(zhihu.com)隐马尔可夫(HMM)的解码问题+维特比算法-知乎(zhihu.com)本次省略所有引用论文目录一、介绍二、建模单位StatesState由来转移概率与发射概率三、Alignment四、深度学习下的HMM方法一:Tandem方法
- RNN-T Training,RNN-T模型训练详解——语音信号处理学习(三)(选修三)
LotusCL
声音信号处理学习rnn信号处理学习人工智能语音识别
参考文献:SpeechRecognition(option)-RNN-TTraining哔哩哔哩bilibili2020年3月新番李宏毅人类语言处理独家笔记AlignmentTrain-8-知乎(zhihu.com)本次省略所有引用论文目录一、如何将Alignment概率加和对齐方式概率如何计算概率加和计算原理概率加和计算方式二、RNN-T的模型训练模型训练思路偏微分计算-1-展开变形偏微分计算-
- Alignment of HMM, CTC and RNN-T,对齐方式详解——语音信号处理学习(三)(选修二)
LotusCL
声音信号处理学习rnn信号处理学习人工智能语音识别
参考文献:SpeechRecognition(option)-AlignmentofHMM,CTCandRNN-T哔哩哔哩bilibili2020年3月新番李宏毅人类语言处理独家笔记Alignment-7-知乎(zhihu.com)本次省略所有引用论文目录一、E2E模型和CTC、RNN-T的区别E2E模型的思路CTC、RNN-T模型的思路二、待解决的问题三、对齐方式介绍四、穷举方式穷举HMM穷举C
- 数字图像处理(1):灰度直方图、直方图均衡化处理(入门必看)
是dream
数字图像处理图像处理
博客主页:真的睡不醒系列专栏:深度学习环境搭建、环境配置问题解决、自然语言处理、语音信号处理、项目开发每日语录:闲看花开,静待花落,冷暖自知,干净如始。感谢大家点赞收藏⭐指正✍️前言:本文详细介绍了如何使用python对图像进行基本的操作,包括对图像的读取、显示、修改和保存,通过Matplotlib对图像进行绘制、显示和保存,最后详细讲解了如何绘制直方图,并对直方图进行均衡化处理。欢迎大家参考和学
- 快速调用百度AI开放平台的API,以OCR通用文字识别为例(封装函数进行连续调用)
是dream
项目开发百度人工智能百度云python
博客主页:真的睡不醒系列专栏:深度学习环境搭建、环境配置问题解决、自然语言处理、语音信号处理、项目开发每日语录:眼里有不朽的光芒心里有永恒的希望。感谢大家点赞收藏⭐指正✍️前言百度开放平台允许开发者访问和利用百度的各种服务和功能,包括语音识别、人脸识别、文字识别、自然语言处理等等。这些API能够满足我们绝大部分需求,来供我们学习和使用。本文就OCR文字识别为例,详细介绍新手小白如何调用百度开放平台
- NLP自然语言处理——关键词提取之 TF-IDF 算法(五分钟带你深刻领悟TF-IDF算法的精髓)
是dream
自然语言处理tf-idf人工智能
博客主页:真的睡不醒系列专栏:深度学习环境搭建、环境配置问题解决、自然语言处理、语音信号处理、项目开发每日语录:要有最朴素的生活和最遥远的梦想,即使明天天寒地冻,山高水远,路远马亡。感谢大家点赞收藏⭐指证✍️前言关键词提取是将文本中的关键信息、核心概念或重要主题抽取出来的过程。这些关键词可以帮助人们快速理解文本的主题,构建文本摘要,提高搜索引擎的效率,甚至用于文本分类和信息检索等应用领域。因此,关
- NLP自然语言处理——关键词提取之 TextRank 算法(五分钟带你深刻领悟TextRank算法的精髓)保姆级教程
是dream
自然语言处理人工智能nlp
博客主页:真的睡不醒系列专栏:深度学习环境搭建、环境配置问题解决、自然语言处理、语音信号处理、项目开发每日语录:你要做冲出的黑马而不是坠落的星星。感谢大家点赞收藏⭐指正✍️前言关键词提取是将文本中的关键信息、核心概念或重要主题抽取出来的过程。这些关键词可以帮助人们快速理解文本的主题,构建文本摘要,提高搜索引擎的效率,甚至用于文本分类和信息检索等应用领域。因此,关键词提取在文本分析和自然语言处理中具
- 操作系统之经典同步问题(司机售票员、文件打印、多个生产者消费者、放水果吃水果、读者优先、写者优先、哲学家死锁问题)
是dream
操作系统算法
博客主页:真的睡不醒系列专栏:深度学习环境搭建、环境配置问题解决、自然语言处理、语音信号处理、项目开发每日语录:闲看花开,静待花落,冷暖自知,干净如始。感谢大家点赞收藏⭐指正✍️目录一、司机与售票员进程同步问题二、PA、PB、PC合作解决文件打印问题三、多个生产者和多个消费者问题四、放水果吃水果问题五、读者写者问题六、哲学家吃饭问题一、司机与售票员进程同步问题问题描述:在公共汽车上,司机和售票员的
- 如何快速搭建一个大模型?简单的UI实现
是dream
项目开发星火大模型对话框UI设计
博客主页:真的睡不醒系列专栏:深度学习环境搭建、环境配置问题解决、自然语言处理、语音信号处理、项目开发每日语录:相信自己,一路风景一路歌,人生之美,正在于此。感谢大家点赞收藏⭐指正✍️前言:本文章纯属是自己无聊,调用了星火认知大模型的接口,并封装成一个脚本。但测试感觉星火认知大模型也不算太智能,但奈何人家提供了免费的token,当然,也可以根据自己的需要,去调用国内的一些大模型。目录一、申请免费的
- A2B master配置32通道传输数据超带宽了,如何解决?
周南音频科技教育学院(AI湖湘学派)
车载DSP音频系统研究开发网络服务器运维
是否需要申请加入数字音频系统研究开发交流答疑群(课题组)?可加我微信hezkz17,本群提供音频技术答疑服务,+群赠送语音信号处理降噪算法,蓝牙耳机音频,DSP音频项目核心开发资料,A2Bmaster配置32通道,超带宽了,如何解决?如果A2BMaster配置了32个通道,并且超过了带宽限制,你可以尝试以下几种解决方案:减少通道数量:将通道数量从32个减少到适当的数量,以确保不超过系统的带宽限制。
- 基于DSP/SOC音乐灯效系统设计方法
周南音频科技教育学院(AI湖湘学派)
音频算法设计研究开发信号处理音频人工智能算法
音乐灯效系统设计方法是否需要申请加入数字音频系统研究开发交流答疑群(课题组)?可加我微信hezkz17,本群提供音频技术答疑服务,+群赠送语音信号处理降噪算法,蓝牙耳机音频,DSP音频项目核心开发资料,三种方法:(1)MIC采集音乐信号变化,(2)直接获取SPK模拟音频信号处理
- 基于低通滤波器的语音信号加噪与去噪(附带Matlab源码)
代码创造之旅
matlab语音识别人工智能Matlab
基于低通滤波器的语音信号加噪与去噪(附带Matlab源码)在语音信号处理中,噪声是一个常见的问题,它会降低语音信号的质量和可理解性。为了提高语音信号的清晰度和减少噪声的影响,可以使用低通滤波器进行信号的加噪与去噪处理。本文将介绍基于低通滤波器的语音信号加噪与去噪的原理,并提供相应的Matlab源码。加噪处理在语音信号加噪处理中,我们可以使用低通滤波器来滤除高频噪声成分,从而提高信号的质量。以下是基
- 多线程编程之卫生间
周凡杨
java并发卫生间线程厕所
如大家所知,火车上车厢的卫生间很小,每次只能容纳一个人,一个车厢只有一个卫生间,这个卫生间会被多个人同时使用,在实际使用时,当一个人进入卫生间时则会把卫生间锁上,等出来时打开门,下一个人进去把门锁上,如果有一个人在卫生间内部则别人的人发现门是锁的则只能在外面等待。问题分析:首先问题中有两个实体,一个是人,一个是厕所,所以设计程序时就可以设计两个类。人是多数的,厕所只有一个(暂且模拟的是一个车厢)。
- How to Install GUI to Centos Minimal
sunjing
linuxInstallDesktopGUI
http://www.namhuy.net/475/how-to-install-gui-to-centos-minimal.html
I have centos 6.3 minimal running as web server. I’m looking to install gui to my server to vnc to my server. You can insta
- Shell 函数
daizj
shell函数
Shell 函数
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。
shell中函数的定义格式如下:
[function] funname [()]{
action;
[return int;]
}
说明:
1、可以带function fun() 定义,也可以直接fun() 定义,不带任何参数。
2、参数返回
- Linux服务器新手操作之一
周凡杨
Linux 简单 操作
1.whoami
当一个用户登录Linux系统之后,也许他想知道自己是发哪个用户登录的。
此时可以使用whoami命令。
[ecuser@HA5-DZ05 ~]$ whoami
e
- 浅谈Socket通信(一)
朱辉辉33
socket
在java中ServerSocket用于服务器端,用来监听端口。通过服务器监听,客户端发送请求,双方建立链接后才能通信。当服务器和客户端建立链接后,两边都会产生一个Socket实例,我们可以通过操作Socket来建立通信。
首先我建立一个ServerSocket对象。当然要导入java.net.ServerSocket包
ServerSock
- 关于框架的简单认识
西蜀石兰
框架
入职两个月多,依然是一个不会写代码的小白,每天的工作就是看代码,写wiki。
前端接触CSS、HTML、JS等语言,一直在用的CS模型,自然免不了数据库的链接及使用,真心涉及框架,项目中用到的BootStrap算一个吧,哦,JQuery只能算半个框架吧,我更觉得它是另外一种语言。
后台一直是纯Java代码,涉及的框架是Quzrtz和log4j。
都说学前端的要知道三大框架,目前node.
- You have an error in your SQL syntax; check the manual that corresponds to your
林鹤霄
You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'option,changed_ids ) values('0ac91f167f754c8cbac00e9e3dc372
- MySQL5.6的my.ini配置
aigo
mysql
注意:以下配置的服务器硬件是:8核16G内存
[client]
port=3306
[mysql]
default-character-set=utf8
[mysqld]
port=3306
basedir=D:/mysql-5.6.21-win
- mysql 全文模糊查找 便捷解决方案
alxw4616
mysql
mysql 全文模糊查找 便捷解决方案
2013/6/14 by 半仙
[email protected]
目的: 项目需求实现模糊查找.
原则: 查询不能超过 1秒.
问题: 目标表中有超过1千万条记录. 使用like '%str%' 进行模糊查询无法达到性能需求.
解决方案: 使用mysql全文索引.
1.全文索引 : MySQL支持全文索引和搜索功能。MySQL中的全文索
- 自定义数据结构 链表(单项 ,双向,环形)
百合不是茶
单项链表双向链表
链表与动态数组的实现方式差不多, 数组适合快速删除某个元素 链表则可以快速的保存数组并且可以是不连续的
单项链表;数据从第一个指向最后一个
实现代码:
//定义动态链表
clas
- threadLocal实例
bijian1013
javathreadjava多线程threadLocal
实例1:
package com.bijian.thread;
public class MyThread extends Thread {
private static ThreadLocal tl = new ThreadLocal() {
protected synchronized Object initialValue() {
return new Inte
- activemq安全设置—设置admin的用户名和密码
bijian1013
javaactivemq
ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到
<bean id="adminSecurityConstraint" class="org.eclipse.jetty.util.security.Constraint">
<p
- 【Java范型一】Java范型详解之范型集合和自定义范型类
bit1129
java
本文详细介绍Java的范型,写一篇关于范型的博客原因有两个,前几天要写个范型方法(返回值根据传入的类型而定),竟然想了半天,最后还是从网上找了个范型方法的写法;再者,前一段时间在看Gson, Gson这个JSON包的精华就在于对范型的优雅简单的处理,看它的源代码就比较迷糊,只其然不知其所以然。所以,还是花点时间系统的整理总结下范型吧。
范型内容
范型集合类
范型类
- 【HBase十二】HFile存储的是一个列族的数据
bit1129
hbase
在HBase中,每个HFile存储的是一个表中一个列族的数据,也就是说,当一个表中有多个列簇时,针对每个列簇插入数据,最后产生的数据是多个HFile,每个对应一个列族,通过如下操作验证
1. 建立一个有两个列族的表
create 'members','colfam1','colfam2'
2. 在members表中的colfam1中插入50*5
- Nginx 官方一个配置实例
ronin47
nginx 配置实例
user www www;
worker_processes 5;
error_log logs/error.log;
pid logs/nginx.pid;
worker_rlimit_nofile 8192;
events {
worker_connections 4096;}
http {
include conf/mim
- java-15.输入一颗二元查找树,将该树转换为它的镜像, 即在转换后的二元查找树中,左子树的结点都大于右子树的结点。 用递归和循环
bylijinnan
java
//use recursion
public static void mirrorHelp1(Node node){
if(node==null)return;
swapChild(node);
mirrorHelp1(node.getLeft());
mirrorHelp1(node.getRight());
}
//use no recursion bu
- 返回null还是empty
bylijinnan
javaapachespring编程
第一个问题,函数是应当返回null还是长度为0的数组(或集合)?
第二个问题,函数输入参数不当时,是异常还是返回null?
先看第一个问题
有两个约定我觉得应当遵守:
1.返回零长度的数组或集合而不是null(详见《Effective Java》)
理由就是,如果返回empty,就可以少了很多not-null判断:
List<Person> list
- [科技与项目]工作流厂商的战略机遇期
comsci
工作流
在新的战略平衡形成之前,这里有一个短暂的战略机遇期,只有大概最短6年,最长14年的时间,这段时间就好像我们森林里面的小动物,在秋天中,必须抓紧一切时间存储坚果一样,否则无法熬过漫长的冬季。。。。
在微软,甲骨文,谷歌,IBM,SONY
- 过度设计-举例
cuityang
过度设计
过度设计,需要更多设计时间和测试成本,如无必要,还是尽量简洁一些好。
未来的事情,比如 访问量,比如数据库的容量,比如是否需要改成分布式 都是无法预料的
再举一个例子,对闰年的判断逻辑:
1、 if($Year%4==0) return True; else return Fasle;
2、if ( ($Year%4==0 &am
- java进阶,《Java性能优化权威指南》试读
darkblue086
java性能优化
记得当年随意读了微软出版社的.NET 2.0应用程序调试,才发现调试器如此强大,应用程序开发调试其实真的简单了很多,不仅仅是因为里面介绍了很多调试器工具的使用,更是因为里面寻找问题并重现问题的思想让我震撼,时隔多年,Java已经如日中天,成为许多大型企业应用的首选,而今天,这本《Java性能优化权威指南》让我再次找到了这种感觉,从不经意的开发过程让我刮目相看,原来性能调优不是简单地看看热点在哪里,
- 网络学习笔记初识OSI七层模型与TCP协议
dcj3sjt126com
学习笔记
协议:在计算机网络中通信各方面所达成的、共同遵守和执行的一系列约定 计算机网络的体系结构:计算机网络的层次结构和各层协议的集合。 两类服务: 面向连接的服务通信双方在通信之前先建立某种状态,并在通信过程中维持这种状态的变化,同时为服务对象预先分配一定的资源。这种服务叫做面向连接的服务。 面向无连接的服务通信双方在通信前后不建立和维持状态,不为服务对象
- mac中用命令行运行mysql
dcj3sjt126com
mysqllinuxmac
参考这篇博客:http://www.cnblogs.com/macro-cheng/archive/2011/10/25/mysql-001.html 感觉workbench不好用(有点先入为主了)。
1,安装mysql
在mysql的官方网站下载 mysql 5.5.23 http://www.mysql.com/downloads/mysql/,根据我的机器的配置情况选择了64
- MongDB查询(1)——基本查询[五]
eksliang
mongodbmongodb 查询mongodb find
MongDB查询
转载请出自出处:http://eksliang.iteye.com/blog/2174452 一、find简介
MongoDB中使用find来进行查询。
API:如下
function ( query , fields , limit , skip, batchSize, options ){.....}
参数含义:
query:查询参数
fie
- base64,加密解密 经融加密,对接
y806839048
经融加密对接
String data0 = new String(Base64.encode(bo.getPaymentResult().getBytes(("GBK"))));
String data1 = new String(Base64.decode(data0.toCharArray()),"GBK");
// 注意编码格式,注意用于加密,解密的要是同
- JavaWeb之JSP概述
ihuning
javaweb
什么是JSP?为什么使用JSP?
JSP表示Java Server Page,即嵌有Java代码的HTML页面。使用JSP是因为在HTML中嵌入Java代码比在Java代码中拼接字符串更容易、更方便和更高效。
JSP起源
在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变。
如果使用Servl
- apple watch 指南
啸笑天
apple
1. 文档
WatchKit Programming Guide(中译在线版 By @CocoaChina) 译文 译者 原文 概览 - 开始为 Apple Watch 进行开发 @星夜暮晨 Overview - Developing for Apple Watch 概览 - 配置 Xcode 项目 - Overview - Configuring Yo
- java经典的基础题目
macroli
java编程
1.列举出 10个JAVA语言的优势 a:免费,开源,跨平台(平台独立性),简单易用,功能完善,面向对象,健壮性,多线程,结构中立,企业应用的成熟平台, 无线应用 2.列举出JAVA中10个面向对象编程的术语 a:包,类,接口,对象,属性,方法,构造器,继承,封装,多态,抽象,范型 3.列举出JAVA中6个比较常用的包 Java.lang;java.util;java.io;java.sql;ja
- 你所不知道神奇的js replace正则表达式
qiaolevip
每天进步一点点学习永无止境纵观千象regex
var v = 'C9CFBAA3CAD0';
console.log(v);
var arr = v.split('');
for (var i = 0; i < arr.length; i ++) {
if (i % 2 == 0) arr[i] = '%' + arr[i];
}
console.log(arr.join(''));
console.log(v.r
- [一起学Hive]之十五-分析Hive表和分区的统计信息(Statistics)
superlxw1234
hivehive分析表hive统计信息hive Statistics
关键字:Hive统计信息、分析Hive表、Hive Statistics
类似于Oracle的分析表,Hive中也提供了分析表和分区的功能,通过自动和手动分析Hive表,将Hive表的一些统计信息存储到元数据中。
表和分区的统计信息主要包括:行数、文件数、原始数据大小、所占存储大小、最后一次操作时间等;
14.1 新表的统计信息
对于一个新创建
- Spring Boot 1.2.5 发布
wiselyman
spring boot
Spring Boot 1.2.5已在7月2日发布,现在可以从spring的maven库和maven中心库下载。
这个版本是一个维护的发布版,主要是一些修复以及将Spring的依赖提升至4.1.7(包含重要的安全修复)。
官方建议所有的Spring Boot用户升级这个版本。
项目首页 | 源