XTU1238:Segment Tree(线段树)

Segment Tree

Problem Description:

A contest is not integrity without problems about data structure.

There is an array a[1],a[2],…,a[n]. And q questions of the following 4 types:
  • 1 l r c - Update a[k] with a[k]+c for all l≤k≤r
  • 2 l r c - Update a[k] with min{a[k],c} for all l≤k≤r;
  • 3 l r c - Update a[k] with max{a[k],c} for all l≤k≤r;
  • 4 l r - Ask for min{a[k]:l≤k≤r} and max{a[k]:l≤k≤r}.

Input

The first line contains a integer T(no more than 5) which represents the number of test cases.

For each test case, the first line contains 2 integers n,q (1≤n,q≤200000).

The second line contains n integers a1,a2,…,an which indicates the initial values of the array (|ai|≤).

Each of the following q lines contains an integer t which denotes the type of i-th question. If t=1,2,3, 3 integers l,r,c follows. If t=4, 2 integers l,r follows. (1≤ti≤4,1≤li≤ri≤n)

If t=1, |ci|≤2000;

If t=2,3, |ci|≤10^9.

Output

For each question of type 4, output two integers denote the minimum and the maximum.

Sample Input

1
1 1
1
4 1 1

Sample Output

1 1


题意:

给出一个数组,分别有4种操作

1 l r c:l~r区间的值改为c

2 l r c:l~r区间内所有比c大的值变为c

3 l r c:l~r区间内所有比c小的值变为c

4 l r:查询区间内最小与最大的数字


思路:

题目都告诉你要用线段树了,但是有一点要注意,这题开始用lld输入是WA,改成I64D才AC


#include<stdio.h>
#define LL long long
const int N = 200100;
const LL INF = 9999999999999;

struct Tree
{
    LL maxt,mint,add;
} node[N*3];

LL max(LL a,LL b)
{
    return a>b?a:b;
}
LL min(LL a,LL b)
{
    return a>b?b:a;
}
void pushUP(int k)
{
    node[k].maxt=max(node[k<<1].maxt,node[k<<1|1].maxt);
    node[k].mint=min(node[k<<1].mint,node[k<<1|1].mint);
}
void pushDown(int k)
{
    if(node[k].add)
    {
        node[k<<1].add+=node[k].add;
        node[k<<1].maxt+=node[k].add;
        node[k<<1].mint+=node[k].add;

        node[k<<1|1].add+=node[k].add;
        node[k<<1|1].maxt+=node[k].add;
        node[k<<1|1].mint+=node[k].add;

        node[k].add=0;
    }
    node[k<<1].maxt=min(node[k<<1].maxt,node[k].maxt);
    node[k<<1].maxt=max(node[k<<1].maxt,node[k].mint);
    node[k<<1].mint=max(node[k<<1].mint,node[k].mint);
    node[k<<1].mint=min(node[k<<1].mint,node[k].maxt);

    node[k<<1|1].maxt=min(node[k<<1|1].maxt,node[k].maxt);
    node[k<<1|1].maxt=max(node[k<<1|1].maxt,node[k].mint);
    node[k<<1|1].mint=max(node[k<<1|1].mint,node[k].mint);
    node[k<<1|1].mint=min(node[k<<1|1].mint,node[k].maxt);
}
void builde(int l,int r,int k)
{
    node[k].add=0;
    if(l==r)
    {
        scanf("%I64d",&node[k].maxt);
        node[k].mint=node[k].maxt;
        return ;
    }
    int m=(l+r)>>1;
    builde(l,m,k<<1);
    builde(m+1,r,k<<1|1);
    pushUP(k);
}

int L,R;
LL C;

void updata1(int l,int r,int k)
{
    if(L<=l&&r<=R)
    {
        node[k].add+=C;
        node[k].maxt+=C;
        node[k].mint+=C;
        return ;
    }
    int m=(l+r)>>1;
    pushDown(k);

    if(L<=m)
        updata1(l,m,k<<1);
    if(m<R)
        updata1(m+1,r,k<<1|1);
    pushUP(k);
}
void updata2(int l,int r,int k)
{

    if(L<=l&&r<=R)
    {
        node[k].maxt=min(node[k].maxt,C);
        node[k].mint=min(node[k].mint,C);
        return ;
    }
    int m=(l+r)>>1;
    pushDown(k);

    if(L<=m)
        updata2(l,m,k<<1);
    if(m<R)
        updata2(m+1,r,k<<1|1);
    pushUP(k);
}
void updata3(int l,int r,int k)
{
    if(L<=l&&r<=R)
    {
        node[k].maxt=max(node[k].maxt,C);
        node[k].mint=max(node[k].mint,C);
        return ;
    }
    int m=(l+r)>>1;
    pushDown(k);

    if(L<=m)
        updata3(l,m,k<<1);
    if(m<R)
        updata3(m+1,r,k<<1|1);
    pushUP(k);
}
LL maxans,minans;
void query(int l,int r,int k)
{
    if(L<=l&&r<=R)
    {
        maxans=max(maxans,node[k].maxt);
        minans=min(minans,node[k].mint);
        return ;
    }
    int m=(l+r)>>1;
    pushDown(k);

    if(L<=m)
        query(l,m,k<<1);
    if(m<R)
        query(m+1,r,k<<1|1);
    pushUP(k);
}

int main()
{
    int T,n,q,op;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d",&n,&q);
        builde(1,n,1);
        while(q--)
        {
            scanf("%d%d%d",&op,&L,&R);
            if(op!=4)
            {
                scanf("%I64d",&C);
                if(op==1)updata1(1,n,1);
                else if(op==2)updata2(1,n,1);
                else if(op==3)updata3(1,n,1);
            }
            else
            {
                minans=INF;
                maxans=-INF;
                query(1,n,1);
                printf("%I64d %I64d\n",minans,maxans);
            }
        }
    }
}


你可能感兴趣的:(线段树,XTU)