Uva-1349-Optimal Bus Route Design

       这个题是二分图最佳完美匹配,第一次用最小费用流做~

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<queue>
using namespace std;
const int inf=1<<29;
const int maxn=210;
const int maxm=2*maxn*maxn;
int e,st,des,n,m,head[maxn],nxt[maxm],cost[maxm],pnt[maxm],flow[maxm],dist[maxn],pre[maxn];
bool vis[maxn];
queue<int> q;
void AddEdge(int u,int v,int f,int c)
{
    pnt[e]=v;nxt[e]=head[u];flow[e]=f;cost[e]=c;head[u]=e++;
    pnt[e]=u;nxt[e]=head[v];flow[e]=0;cost[e]=-c;head[v]=e++;
}
bool Spfa(int st,int des)
{
    for(int i=st;i<=des;i++)
    {   
        dist[i]=inf;
        pre[i]=-1;
    }
    dist[st]=0;
    q.push(st);
    while(!q.empty())
    {
        int u=q.front();
        vis[u]=0;
        q.pop();
        for(int i=head[u];i!=-1;i=nxt[i])
        {
            if(flow[i]&&dist[pnt[i]]>dist[u]+cost[i])
            {
                dist[pnt[i]]=dist[u]+cost[i];
                pre[pnt[i]]=i;
                if(!vis[pnt[i]])
                {
                    vis[pnt[i]]=1;
                    q.push(pnt[i]);
                }
            }
        }
    }
    return dist[des]!=inf;
}
void maxflow()
{
    int ans=0,minicost=0;
    while(Spfa(st,des))
    {
        int mini=inf;
        for(int i=pre[des];i!=-1;i=pre[pnt[i^1]])
            mini=min(mini,flow[i]);
        for(int i=pre[des];i!=-1;i=pre[pnt[i^1]])
        {
            flow[i]-=mini;
            flow[i^1]+=mini;
        }
        ans+=mini;
        minicost+=mini*dist[des];
    }
    if(ans!=n)
    {
        printf("N\n");
        return;
    }
    printf("%d\n",minicost);
    
}
int main()
{
    while(scanf("%d",&n)&&n)
    {
        e=st=0;
        des=2*n+1;
        memset(head,-1,sizeof(head));
        for(int i=1;i<=n;i++)
        {
            int v,c;
            while(scanf("%d",&v)&&v)
            {
                scanf("%d",&c);
                AddEdge(i,n+v,1,c);
            }
        }        
        for(int i=1;i<=n;i++)
        {
            AddEdge(st,i,1,0);
            AddEdge(n+i,des,1,0);
        } 
        maxflow();
    }
    return 0;
}


你可能感兴趣的:(最小费用流,二分图完美匹配)