Description
Optimus Mobiles produces mobile phones that support SMS messages. The Mobiles have a keypad of 12 keys, numbered 1 to 12. There is a character string assigned to each key. To type in the n-th character in the character string of a particular key, one should press the key n times. Optimus Mobiles wishes to solve the problem of assigning character strings to the keys such that for typing a random text out of a dictionary of common words, the average typing effort (i.e. the average number of keystrokes) is minimal.
Input
The first line contains a single integer t (1 <= t <= 10), the number of test cases. Each test case starts with a line, containing an integer M (1 <= M <= 10000), the number of common words in the test case. In each M subsequent line, there is a common word. Each common word contains at most 30 characters from the alphabet {a, b, c,..., z, +, *, /, ?}.
Output
The output contains one line per test case containing an optimal cut string. Obviously, there may be more than a single optimal cut string, so print the optimal cut string which is the smallest one in lexicographic order.
Sample Input
2
2
hi
ok
5
hello
bye
how
when
who
Sample Output
bcdefghijko
bcdefhlnowy
Source
/** 题目大意:给出“abcd...z+* /?"的序列,要求分为12段,作为手机的12个按键上的字符,使得我们用手机输入单词时按键的次数最少,单词的数量是10000每个长度最大为30。 思路:注意到输入的顺序可以打乱,即输入“ab”和输入“ba”花费是一样的,我们可以预处理一下,统计这30个字符出现的次数,现在我们要做的就是把这 30个字符分成12份。容易想到的方程是 dp[i][j] = min{ dp[i - 1][k - 1] + sum(k, j) }; dp[i][j]表示前j个字符分成i份,sum(k, j)表示第k个字符到第j个字符划分在同一个按键内的花费;最后记录一下路径。 **/
#include <iostream> #include <cstring> #include <cstdio> using namespace std; const int N = 32; char alph[] = " abcdefghijklmnopqrstuvwxyz+*/?"; int flect[140]; int num[N]; int s[N][N]; int dp[N][N]; int ans[N]; void init() { for (int i = 1; i <= 30; i++) flect[(int) alph[i]] = i; } char str[N]; int main() { //freopen("in.txt", "r", stdin); init(); int n, T, i, j, k; scanf("%d", &T); while (T--) { scanf("%d", &n); memset(num, 0, sizeof(num)); for (i = 0; i < n; i++) { scanf("%s", str); for (j = 0; str[j]; j++) num[flect[(int)str[j]]]++; } //dp memset(dp, 0x3f, sizeof(dp)); int sum = 0; for (i = 1; i <= 19; i++) { sum += num[i] * i; dp[1][i] = sum; s[1][i] = 1; } for (i = 2; i <= 12; i++) for (j = i; j <= 30; j++) { for (k = i; k <= j; k++) { sum = 0; for (int h = k; h <= j; h++) sum += num[h] *(h - k + 1); if (dp[i - 1][k - 1] + sum < dp[i][j]) { dp[i][j] = dp[i - 1][k - 1] + sum; s[i][j] = k; } } } int cnt = 0; int now = 30; for (i = 12; i > 1; i--) { ans[cnt++] = s[i][now]; now = s[i][now] - 1; } for (i = cnt - 1; i >= 0; i--) printf("%c", alph[ans[i]]); printf("\n"); } }