之前接触c++版的Opencv一般都是用到什么就去找什么,最近安装了Python的Opencv,脚本语言就是有它的好处,直接运行就能看到好多例程:
今天看的是一个初级图像处理只是,颜色直方图,直接引用的Python版Opencv例程,需要注释的地方都加了说明
这个例子分别展示了3通道颜色直方图、灰度图像直方图、灰度直方图均衡化(也就是将直方图均匀开来,能够达到提升图像局部对比度的效果)后的直方图以及图像归一化后的直方图
import cv2 import numpy as np bins = np.arange(256).reshape(256,1) def hist_curve(im): h = np.zeros((300,256,3)) if len(im.shape) == 2:#判断如果为灰度图像用白色线画,所以这里color赋值为白色 color = [(255,255,255)] elif im.shape[2] == 3:#判断如果为彩色图像,分三个通道分别计算直方图 color = [ (255,0,0),(0,255,0),(0,0,255) ] for ch, col in enumerate(color):#循环遍历3个通道,每次循环对划线进行颜色赋值,已达到清晰表示 hist_item = cv2.calcHist([im],[ch],None,[256],[0,255])#直方图计算[ch]为通道 cv2.normalize(hist_item,hist_item,0,255,cv2.NORM_MINMAX)#直方图归一化 hist=np.int32(np.around(hist_item))#将归一化的直方图取整 pts = np.int32(np.column_stack((bins,hist)))#将bins列与直方图列合并 cv2.polylines(h,[pts],False,col)#通过构造得到的线pts在h上画出直方图曲线 y=np.flipud(h)#由于图是倒着的,将矩阵头尾对调 return y def hist_lines(im): h = np.zeros((300,256,3)) if len(im.shape)!=2: print "hist_lines applicable only for grayscale images" #print "so converting image to grayscale for representation" im = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)#如果图片不是灰度图转为灰度图 hist_item = cv2.calcHist([im],[0],None,[256],[0,255]) cv2.normalize(hist_item,hist_item,0,255,cv2.NORM_MINMAX) hist=np.int32(np.around(hist_item)) for x,y in enumerate(hist): cv2.line(h,(x,0),(x,y),(255,255,255))#以每个bin的累积高度作为纵坐标bin作为横坐标画垂直的线来表示直方图 #y = np.flipud(h) return h if __name__=='__main__': import sys if len(sys.argv)>1: im = cv2.imread(sys.argv[1]) else : im = cv2.imread('E:/lena.jpg') print "usage : python hist.py <image_file>" gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) print ''' Histogram plotting \n Keymap :\n a - show histogram for color image in curve mode \n b - show histogram in bin mode \n c - show equalized histogram (always in bin mode) \n d - show histogram for color image in curve mode \n e - show histogram for a normalized image in curve mode \n Esc - exit \n ''' cv2.imshow('image',im) while True: k = cv2.waitKey(0)&0xFF if k == ord('a'): curve = hist_curve(im) cv2.imshow('histogram',curve) cv2.imshow('image',im) print 'a' elif k == ord('b'): print 'b' lines = hist_lines(im) cv2.imshow('histogram',lines) cv2.imshow('image',gray) elif k == ord('c'): print 'c' equ = cv2.equalizeHist(gray)#直方图标准化 lines = hist_lines(equ) cv2.imshow('histogram',lines) cv2.imshow('image',equ) elif k == ord('d'): print 'd' curve = hist_curve(gray) cv2.imshow('histogram',curve) cv2.imshow('image',gray) elif k == ord('e'): print 'e' norm = cv2.normalize(gray,alpha = 0,beta = 255,norm_type = cv2.NORM_MINMAX)#灰度图归一化 lines = hist_lines(norm) cv2.imshow('histogram',lines) cv2.imshow('image',norm) elif k == 27: print 'ESC' cv2.destroyAllWindows() break cv2.destroyAllWindows()