poj-2955 (区间dp)

Brackets
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 5150   Accepted: 2761

Description

We give the following inductive definition of a “regular brackets” sequence:

  • the empty sequence is a regular brackets sequence,
  • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
  • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
  • no other sequence is a regular brackets sequence

For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1i2, …, im where 1 ≤ i1 < i2 < … < im ≤ nai1ai2 … aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input

The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters ()[, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

Output

For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input

((()))
()()()
([]])
)[)(
([][][)
end

Sample Output

6
6
4
0
6
AC代码:
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; char str[150]; int dp[120][120]; int main() { while(1) { scanf("%s",str); if(str[0]=='e')break; int len=strlen(str); memset(dp,0,sizeof(dp)); for(int j=0;j<len;j++) { for(int i=j-1;i>=0;i--) { dp[i][j]=dp[i+1][j]; for(int k=i+1;k<=j;k++) { if((str[i]=='('&&str[k]==')')||(str[i]=='['&&str[k]==']')) { dp[i][j]=max(dp[i][j],dp[i+1][k-1]+dp[k+1][j]+2); } } } } cout<<dp[0][len-1]<<"\n"; } return 0; }

你可能感兴趣的:(poj-2955 (区间dp))