半监督学习和直推式学习

半监督学习(Semi-Supervised Learning,SSL)是模式识别和机器学习领域研究的重点问题,是监督学习与无监督学习相结合的一种学习方法。它主要考虑如何利用少量的标注样本和大量的未标注样本进行训练和分类的问题。主要分为半监督分类,半监督回归,半监督聚类和半监督降维算法。

至于直推学习,它与半监督学习一样不需要人工干预,不同的是,直推学习假设未标记的数据就是最终要用来测试的数据,学习的目的就是在这些数据上取得最佳泛化能力。相对应的,半监督学习在学习时并不知道最终的测试用例是什么。

也就是说,直推学习其实类似于半监督学习的一个子问题,或者说是一个特殊化的半监督学习,所以也有人将其归为半监督学习。


你可能感兴趣的:(半监督学习和直推式学习)