还是需要这么做来声明这个变量
Ptr<FaceRecognizer> fc
有三种方法可以使用:
createEigenFaceRecognizer、createFisherFaceRecognizer、createLBPHFaceRecognizer。
训练和识别所需要的均为灰度图,而且图片大小必须完全一样。
也可以用save 和load对已经训练好的数据进行储存和读取。
#define _CRT_SECURE_NO_DEPRECATE
#include <iostream>
#include <stdio.h>
#include "opencv2/core.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/core/ocl.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/features2d.hpp"
#include "opencv2/calib3d.hpp"
#include "opencv2/imgproc.hpp"
#include"opencv2/flann.hpp"
#include"opencv2/xfeatures2d.hpp"
#include"opencv2/ml.hpp"
#include"opencv2/face.hpp"
#include"opencv2/face/facerec.hpp"
#include"opencv2/objdetect.hpp"
using namespace cv;
using namespace std;
using namespace cv::xfeatures2d;
using namespace cv::ml;
using namespace face;
int main()
{
CascadeClassifier cas("haarcascade_frontalface_default.xml"); //加载人脸分类器
Ptr<FaceRecognizer> fc = createFisherFaceRecognizer();
Mat a1 = imread("01.jpg",CV_LOAD_IMAGE_GRAYSCALE); //加载用于训练的人脸照片
Mat a2 = imread("02.jpg", CV_LOAD_IMAGE_GRAYSCALE);
Mat a3 = imread("03.jpg", CV_LOAD_IMAGE_GRAYSCALE);
Mat a4 = imread("04.jpg", CV_LOAD_IMAGE_GRAYSCALE);
Mat a5 = imread("05.jpg", CV_LOAD_IMAGE_GRAYSCALE);
Mat b1 = imread("11.jpg", CV_LOAD_IMAGE_GRAYSCALE);
Mat b2 = imread("12.jpg", CV_LOAD_IMAGE_GRAYSCALE);
Mat b3 = imread("13.jpg", CV_LOAD_IMAGE_GRAYSCALE);
Mat b4 = imread("14.jpg", CV_LOAD_IMAGE_GRAYSCALE);
Mat b5 = imread("15.jpg", CV_LOAD_IMAGE_GRAYSCALE);
Mat c1 = imread("21.jpg", CV_LOAD_IMAGE_GRAYSCALE);
Mat c2 = imread("22.jpg", CV_LOAD_IMAGE_GRAYSCALE);
Mat c3 = imread("23.jpg", CV_LOAD_IMAGE_GRAYSCALE);
Mat c4 = imread("24.jpg", CV_LOAD_IMAGE_GRAYSCALE);
Mat c5 = imread("25.jpg", CV_LOAD_IMAGE_GRAYSCALE);
vector<Mat> images;
vector<int>labels;
images.push_back(a1); //照片和标签存入向量里,我了三个人的
labels.push_back(0);
images.push_back(a2);
labels.push_back(0);
images.push_back(a3);
labels.push_back(0);
images.push_back(a4);
labels.push_back(0);
images.push_back(a5);
labels.push_back(0);
images.push_back(b1);
labels.push_back(1);
images.push_back(b2);
labels.push_back(1);
images.push_back(b3);
labels.push_back(1);
images.push_back(b4);
labels.push_back(1);
images.push_back(b5);
labels.push_back(1);
images.push_back(c1);
labels.push_back(2);
images.push_back(c2);
labels.push_back(2);
images.push_back(c3);
labels.push_back(2);
images.push_back(c4);
labels.push_back(2);
images.push_back(c5);
labels.push_back(2);
fc->train(images, labels); //训练
VideoCapture cap;
cap.open(1);
Mat image;
vector<Rect> recs;
Mat test(400, 500, CV_8UC1);
Mat gray;
int x = 0, y = 0;
for (;;)
{
cap >> image;
if (image.empty())
break;
cas.detectMultiScale(image, recs,1.2,6,0,Size(50,50)); //先检测人脸
for (int i = 0; i < recs.size();i++)
{
rectangle(image, recs[i], Scalar(0, 0, 255));
x = recs[i].x + recs[i].width / 2;
y = recs[i].y + recs[i].height / 2;
Mat roi = image(recs[i]); //因为我训练的样本是400*500大小,所以需要把摄像头中的人脸区域改为400*500大小
cvtColor(roi, gray, CV_BGR2GRAY);
resize(gray, test, Size(400, 500));
int result = fc->predict(test);
switch (result)
{
case 0:
putText(image, "a", Point(recs[i].x, recs[i].y), FONT_HERSHEY_SIMPLEX, 1.5, Scalar(0, 0, 255), 2); break;
case 1:
putText(image, "b", Point(recs[i].x, recs[i].y), FONT_HERSHEY_SIMPLEX, 1.5, Scalar(0, 0, 255), 2); break;
case 2:
putText(image, "c", Point(recs[i].x, recs[i].y), FONT_HERSHEY_SIMPLEX, 1.5, Scalar(0, 0, 255), 2); break;
}
}
imshow("Sample", image);
if (waitKey(30) >= 0)
break;
}
}