mahout的推荐引擎Taste的学习笔记(三)

                                        (二) 基于物品的CF

 

了解了 User CF,Mahout Item CF 的实现与 User CF 类似,是基于 ItemSimilarity,下面我们看实现的代码例子,它比 User CF 更简单,因为 Item CF 中并不需要引入邻居的概念:


清单 4. 基于 Mahout 实现 Item CF

				 
 DataModel model = new FileDataModel(new File("preferences.dat")); 
 ItemSimilarity similarity = new PearsonCorrelationSimilarity(model); 
 Recommender recommender = new GenericItemBasedRecommender(model, similarity); 

 

首先来分析一下GenericItemBasedRecommender这个类,他的功能函数为:

  @Override
  public List<RecommendedItem> recommend(long userID, int howMany, IDRescorer rescorer) throws TasteException {
    Preconditions.checkArgument(howMany >= 1, "howMany must be at least 1");
    log.debug("Recommending items for user ID '{}'", userID);

    PreferenceArray preferencesFromUser = getDataModel().getPreferencesFromUser(userID);
    if (preferencesFromUser.length() == 0) {
      return Collections.emptyList();
    }
    //得到其他所有可能的item
    FastIDSet possibleItemIDs = getAllOtherItems(userID, preferencesFromUser);

    //创建评估器
    TopItems.Estimator<Long> estimator = new Estimator(userID, preferencesFromUser);
    //获取评测分数最高的howMany个item返回
    List<RecommendedItem> topItems = TopItems.getTopItems(howMany, possibleItemIDs.iterator(), rescorer,
      estimator);

    log.debug("Recommendations are: {}", topItems);
    return topItems;
  }

 

1、获取其他可能的items

 首先根据该userid用户所评论过的所有item,然后得到每个item对应进行评价过的user列表,然后将对应的每个user所评价过的item都添加到一个集合之中 ,最后将该集合中该userid用户评价过的item去除掉,得到我们想要的集合

protected FastIDSet getAllOtherItems(long userID, PreferenceArray preferencesFromUser) throws TasteException {
    return candidateItemsStrategy.getCandidateItems(userID, preferencesFromUser, dataModel);
  }
//这里的candidateItemsStrategy的出处
public GenericItemBasedRecommender(DataModel dataModel, ItemSimilarity similarity) {
    this(dataModel,
         similarity,
         AbstractRecommender.getDefaultCandidateItemsStrategy(),
         getDefaultMostSimilarItemsCandidateItemsStrategy());
  }
protected static CandidateItemsStrategy getDefaultCandidateItemsStrategy() {
    return new PreferredItemsNeighborhoodCandidateItemsStrategy();
  }

public final class PreferredItemsNeighborhoodCandidateItemsStrategy extends AbstractCandidateItemsStrategy {
	
  /*
   * 首先根据该user所评论过的所有item,然后得到每个item对应进行评价过的user列表,
   * 然后将对应的每个user所评价过的item都添加到一个集合之中
   * 最后将该集合中该user评价过的item去除掉,得到我们想要的集合
   * 
   */
  @Override
  protected FastIDSet doGetCandidateItems(long[] preferredItemIDs, DataModel dataModel) throws TasteException {
    FastIDSet possibleItemsIDs = new FastIDSet();
    for (long itemID : preferredItemIDs) {
      PreferenceArray itemPreferences = dataModel.getPreferencesForItem(itemID);
      int numUsersPreferringItem = itemPreferences.length();
      for (int index = 0; index < numUsersPreferringItem; index++) {
        possibleItemsIDs.addAll(dataModel.getItemIDsFromUser(itemPreferences.getUserID(index)));
      }
    }
    possibleItemsIDs.removeAll(preferredItemIDs);
    return possibleItemsIDs;
  }

}

  

2、创建评估器

 将上边得到的可能的item的列表中的每一个item进行评估,一个可能的item与该userid用户所评价过的所有的item进行相似度的计算,最后取平均值,得到的这个值就是对这个item的评估值

  private final class Estimator implements TopItems.Estimator<Long> {
        
    @Override
    public double estimate(Long itemID) throws TasteException {
      return doEstimatePreference(userID, preferencesFromUser, itemID);
    }
  }
 protected float doEstimatePreference(long userID, PreferenceArray preferencesFromUser, long itemID)
    throws TasteException {
    double preference = 0.0;
    double totalSimilarity = 0.0;
    int count = 0;
    //用userid用户所有评价过的item与itemid的物品进行相似度计算
    double[] similarities = similarity.itemSimilarities(itemID, preferencesFromUser.getIDs());
    for (int i = 0; i < similarities.length; i++) {
      double theSimilarity = similarities[i];
      if (!Double.isNaN(theSimilarity)) {
        // Weights can be negative!
        preference += theSimilarity * preferencesFromUser.getValue(i);
        totalSimilarity += theSimilarity;
        count++;
      }
    }
    // Throw out the estimate if it was based on no data points, of course, but also if based on
    // just one. This is a bit of a band-aid on the 'stock' item-based algorithm for the moment.
    // The reason is that in this case the estimate is, simply, the user's rating for one item
    // that happened to have a defined similarity. The similarity score doesn't matter, and that
    // seems like a bad situation.
    if (count <= 1) {
      return Float.NaN;
    }
    float estimate = (float) (preference / totalSimilarity);
    if (capper != null) {
      estimate = capper.capEstimate(estimate);
    }
    return estimate;
  }


 

3、获取评测分数最高的howMany个item返回

将上边可能item列表中的item的得分,都插入到一个优先队列中,保留评估值最高的howMany个item,作为最后的推荐结果返回

public static List<RecommendedItem> getTopItems(int howMany,
                                                  LongPrimitiveIterator possibleItemIDs,
                                                  IDRescorer rescorer,
                                                  Estimator<Long> estimator) throws TasteException {
    Preconditions.checkArgument(possibleItemIDs != null, "argument is null");
    Preconditions.checkArgument(estimator != null, "argument is null");

    Queue<RecommendedItem> topItems = new PriorityQueue<RecommendedItem>(howMany + 1,
      Collections.reverseOrder(ByValueRecommendedItemComparator.getInstance()));
    boolean full = false;
    double lowestTopValue = Double.NEGATIVE_INFINITY;
    while (possibleItemIDs.hasNext()) {
      long itemID = possibleItemIDs.next();
      if (rescorer == null || !rescorer.isFiltered(itemID)) {
        double preference;
        try {
          //得到该item的平均得分作为user的预测评分
          preference = estimator.estimate(itemID);
        } catch (NoSuchItemException nsie) {
          continue;
        }
        double rescoredPref = rescorer == null ? preference : rescorer.rescore(itemID, preference);
        if (!Double.isNaN(rescoredPref) && (!full || rescoredPref > lowestTopValue)) {
          topItems.add(new GenericRecommendedItem(itemID, (float) rescoredPref));
          if (full) {
            topItems.poll();
          } else if (topItems.size() > howMany) {
            full = true;
            topItems.poll();
          }
          lowestTopValue = topItems.peek().getValue();
        }
      }
    }
    int size = topItems.size();
    if (size == 0) {
      return Collections.emptyList();
    }
    List<RecommendedItem> result = Lists.newArrayListWithCapacity(size);
    result.addAll(topItems);
    Collections.sort(result, ByValueRecommendedItemComparator.getInstance());
    return result;
  }

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

你可能感兴趣的:(Mahout)