POJ2396:Budget 有源汇上下界可行流

好久没A的这么舒畅了。。第一次写居然1A辣。。

Part2:
有源汇上下界可行流
有源汇上下界可行流就是在多了源点和汇点,这样导致除了源点和汇点外的其他店都流量守恒,我们可以从 T S 连一条容量为无穷大的边,保证 S,T 也流量守恒,然后就可以转化为无源汇上下界可行流做啦。
这题的建图很直观,行列建图,每行连源点,每列连汇点,上下界均为 sumi ,然后关于点 (i,j) 的操作就把第 i 行和第 j 列连边,根据操作确定上下界。然后直接跑有源汇上下界可行流就好辣。

#include<iostream>
#include<cstdio>
#include<cstring>
#define inf 1000000007
#define N 305
#define M 10005
using namespace std;
int head[N],cur[N],dis[N],q[N];
int next[M],list[M],key[M];
int n,m,Q,S,T,SS,TT,cnt,tot,total;
int A[N],B[N],l[N][N],h[N][N],d[N];
bool flag;
inline int read()
{
    int a=0,f=1; char c=getchar();
    while (c<'0'||c>'9') {if (c=='-') f=-1; c=getchar();}
    while (c>='0'&&c<='9') {a=a*10+c-'0'; c=getchar();}
    return a*f;
}
inline void insert(int x,int y,int z)
{
    next[++cnt]=head[x];
    head[x]=cnt;
    list[cnt]=y;
    key[cnt]=z;
}
inline bool BFS()
{
    int t=0,w=1,x;
    memset(dis,-1,sizeof(dis));
    q[1]=SS; dis[SS]=1;
    while (t<w)
    {
        x=q[++t];
        for (int i=head[x];i;i=next[i])
            if (key[i]&&dis[list[i]]==-1)
                dis[q[++w]=list[i]]=dis[x]+1;
    }
    return dis[TT]!=-1;
}
int find(int x,int flow)
{
    if (x==TT) return flow;
    int w,used=0;
    for (int i=cur[x];i;i=next[i])
        if (key[i]&&dis[list[i]]==dis[x]+1)
        {
            w=find(list[i],min(key[i],flow-used));
            key[i]-=w; key[i^1]+=w; used+=w;
            if (key[i]) cur[x]=i;
            if (used==flow) return used;
        }
    if (!used) dis[x]=-1;
    return used;
}
inline int dinic()
{
    int ans=0;
    while (BFS())
    {
        for (int i=0;i<=TT;i++) cur[i]=head[i];
        ans+=find(SS,inf);
    }
    return ans;
}
inline void update(int x,int y,int type,int num)
{
    switch (type)
    {
        case 1:
            l[x][y]=max(l[x][y],num+1);
            break;
        case 2:
            h[x][y]=min(h[x][y],num-1);
            break;
        case 3:
            l[x][y]=max(l[x][y],num);
            h[x][y]=min(h[x][y],num);
            break;
    }
}
int main()
{
    int testcase=read();
    while (testcase--)
    {
        n=read(); m=read(); S=0; T=n+m+1; cnt=1; tot=0; SS=T+1; TT=T+2; total=0; flag=1;
        memset(head,0,sizeof(head));
        memset(l,0,sizeof(l));
        memset(d,0,sizeof(d));
        for (int i=1;i<=n;i++) A[i]=read();
        for (int i=1;i<=m;i++) B[i]=read();
        for (int i=1;i<=n;i++)
            for (int j=1;j<=m;j++)
                h[i][j]=A[i]>B[j]?B[j]:A[i];
        Q=read();
        while (Q--)
        {
            int x=read(),y=read(),type;
            char opt[5];
            scanf("%s",opt);
            switch (opt[0])
            {
                case '>':
                    type=1; 
                    break;
                case '<':
                    type=2; 
                    break;
                case '=':
                    type=3; 
                    break;
            }
            int num=read();
            if (!x&&!y)
                for (int i=1;i<=n;i++)
                    for (int j=1;j<=m;j++)
                        update(i,j,type,num);
            else if (!x)
                for (int i=1;i<=n;i++)
                    update(i,y,type,num);
            else if (!y)
                for (int i=1;i<=m;i++)
                    update(x,i,type,num);
            else update(x,y,type,num);
        }
        for (int i=1;i<=n;i++)
            for (int j=1;j<=m;j++)
                d[i]-=l[i][j],d[j+n]+=l[i][j];
        for (int i=1;i<=n;i++)
            d[i]+=A[i],d[S]-=A[i];
        for (int i=1;i<=m;i++)
            d[T]+=B[i],d[i+n]-=B[i];
        for (int i=1;i<=n;i++)
            for (int j=1;j<=m;j++)
                insert(i,j+n,h[i][j]-l[i][j]),insert(j+n,i,0);
        insert(T,S,inf); insert(S,T,0);
        for (int i=S;i<=T;i++)
            if (d[i]>0) total+=d[i],insert(SS,i,d[i]),insert(i,SS,0);
            else if (d[i]<0) insert(i,TT,-d[i]),insert(TT,i,0);
        if (dinic()!=total) {puts("IMPOSSIBLE"); continue;}
        else 
        {
            int now=0;
            for (int i=1;i<=n;i++,puts(""))
                for (int j=1;j<=m;j++) 
                {
                    now++;
                    printf("%d ",key[now<<1|1]+l[i][j]);
                }
            puts("");
        }
        puts("");
    }
    return 0;
}

你可能感兴趣的:(POJ2396:Budget 有源汇上下界可行流)