- 贪心算法详解:理解贪心算法看这一篇就够了
爪哇学长
Java编程基础及进阶贪心算法算法javapython
文章目录1.贪心算法的基础理论1.1什么是贪心选择性质1.2证明贪心选择性质2.设计步骤2.1定义问题和目标2.2确定数据结构2.3排序和选择策略2.4迭代与决策2.5终止条件3.实例详解3.1活动选择问题3.2分数背包问题3.3最小生成树(Kruskal算法)1.贪心算法的基础理论1.1什么是贪心选择性质贪心选择性质是指一个全局最优解可以通过一系列局部最优的选择构建出来。这意味着在做出每个选择时
- 贪心算法经典问题
弥彦_
c++算法c++
目录贪心思想一、Dijkstra最短路问题问题描述:贪心策略:二、Prim和Kruskal最小生成树问题Prim算法:Kruskal算法:三、Huffman树问题问题描述:贪心策略:四、背包问题问题描述:贪心策略:五、硬币找零问题问题描述:贪心策略:六、区间合并问题问题描述:贪心策略:七、选择不相交区间问题问题描述:贪心策略:八、区间选点问题问题描述贪心策略九、区间覆盖问题问题描述:贪心策略:十、
- 从0开始学习R语言--Day21--Kruskal-Wallis检验与Friedman检验
Chef_Chen
学习
Kruskal-Wallis检验Kruskal-Wallis检验一般用于比较常见的比较三个群体的水平,比如我们有一班、二班、三班的语文成绩,我们将三个班的学生成绩混合在一起进行排名,也就是我们平时所说的级排名。进一步通过计算班级的平均级排名来判断班级之间的班级水平,这个方法要求数据之间要独立分布,即不要有类似三个班之间会有互相辅导的情况,不互相影响。Friedman检验Friedman检验同样用于
- Python·算法分类题库
欢迎关注【Python·算法分类题库】,持续更新中……知识点A字符串(AC自动机、拓展KMP、后缀数组、后缀自动机、回文自动机)图论(网络流、一般图匹配)数学(生成函数、莫比乌斯反演、快速傅里叶变换)数据结构(树链剖分、二维/动态开点线段树、平衡树、可持久化数据结构、树套树、动态树)B排序(归并、快速、桶、堆、基数)搜索(剪枝、双向BFS、记忆化搜索、迭代加深搜索、启发式搜索)DP(背包、树形、状
- Minimum/Maximum Spanning Tree/Forest
Razhme
算法初步系列
MST问题。对于一个有权无向图,使其原有连通块保持连通性并形成树,同时边权之和最小。换一种说法,最小生成树或者最小生成森林。两个算法一个推论。Kruskal'sAlgorithm基于贪心。将边排序,从最短边开始,若添加了此边,两个不相连的连通块相连了,就添加,否则看下一条。添加到边数为点数-1为止。用并查集检验是否连通。注意Kruskal的原理为,对于图中任意一个点x,对于x点连出去的所有边,边权
- 数据结构与算法学习笔记----Kruskal算法
明月清了个风
数据结构与算法笔记(基础课)算法学习笔记
数据结构与算法学习笔记----Kruskal算法@@author:明月清了个风@@firstpublishtime:2024.12.21ps⭐️这也是一个思想比较简单的算法,只写了基本思想,具体的可以看代码理解一下Kruskal算法Kruskal算法同样是一种基于贪心策略的最小生成树求解算法,另一种是上一篇中的Prim算法。基本思想将所有的边按边长从小到大排序。遍历所有边,判断每条边所连接的两个节
- Dunn’s test和Bonferroni校正的spss界面操作
一只土卜皿
spssspss
好的,用户现在问的是Dunn’stest和Bonferroni校正的SPSS界面操作。首先,我需要确认用户的需求。他们可能是在进行多重比较,比如在Kruskal-Wallis检验之后需要成对比较,而Dunn’stest正是用于这种情况的非参数方法。Bonferroni校正是用来控制多重比较的误差,避免假阳性结果。接下来,用户可能已经完成了Kruskal-Wallis检验,得到了显著的结果,现在需要
- ruskal 最小生成树算法
19要加油
算法
https://www.lanqiao.cn/problems/17138/learning/并查集+ruskal最小生成树算法Kruskal算法是一种用于在加权无向连通图中寻找最小生成树(MST)的经典算法。其核心思想是基于贪心策略,通过按边权从小到大排序并逐步选择边,确保最终形成的树满足以下条件:包含图中所有顶点(即生成树)。边权之和最小(即最小性)。不形成环路(确保是树结构)。算法步骤排序边
- Leetcode刷题 | Day61_图论07
freyazzr
leetcode图论算法数据结构c++
一、学习任务最小生成树——prim算法代码随想录最小生成树——kruskal算法代码随想录Kruskal与prim的关键区别在于,prim维护的是节点的集合,而Kruskal维护的是边的集合。在节点数量固定的情况下,图中的边越少,Kruskal需要遍历的边也就越少。而prim算法是对节点进行操作的,节点数量越少,prim算法效率就越优。边数量较少为稀疏图,接近或等于完全图(所有节点皆相连)为稠密图
- [leetcode]1631. 最小体力消耗路径(bool类型dfs+二分答案/记忆化剪枝/并查集Kruskal思想)
Joe_Wang5
深度优先leetcode剪枝
题目链接题意给定n×mn\timesmn×m地图要从(1,1)走到(n,m)定义高度绝对差为四联通意义下相邻的两个点高度的绝对值之差定义路径的体力值为整条路径上所有高度绝对差的max求所有路径中最小的路径体力值是多少方法1这是我一开始自己写的记忆化剪枝比较暴力时间复杂度很高但是能勉强通过思路dfs枚举每条路径对ans取min但是会超时那么加上记忆化剪枝Codevoidcmax(int&a,intb
- 搜索与图论--Floyd/Prim/Kruskal
Spike_Q
算法学习图论算法数据结构c++
目录1.Floyd求最短路输入格式输出格式数据范围输入样例:输出样例:代码展示:2.Prim算法求最小生成树输入格式输出格式数据范围输入样例:输出样例:代码展示:3.Kruskal算法求最小生成树输入格式输出格式数据范围输入样例:输出样例:代码展示:WATER~1.Floyd求最短路给定一个n个点m条边的有向图,图中可能存在重边和自环,边权可能为负数。再给定k个询问,每个询问包含两个整数x和y,表
- 算法笔记.kruskal算法求最小生成树
xin007hoyo
算法笔记图论
题目:(来源:AcWing)给定一个n个点m条边的无向图,图中可能存在重边和自环,边权可能为负数。求最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。给定一张边带权的无向图G=(V,E),其中V表示图中点的集合,E表示图中边的集合,n=|V|,m=|E|。由V中的全部n个顶点和E中n−1条边构成的无向连通子图被称为G的一棵生成树,其中边的权值之和最小的生成树被称为无向图G的
- 青少年编程与数学 02-018 C++数据结构与算法 16课题、贪心算法
明月看潮生
编程与数学第02阶段青少年编程c++贪心算法编程与数学算法
青少年编程与数学02-018C++数据结构与算法16课题、贪心算法一、贪心算法的基本概念定义组成部分二、贪心算法的工作原理三、贪心算法的优点四、贪心算法的缺点五、贪心算法的应用实例(一)找零问题问题描述:贪心策略:示例代码:解释:(二)活动安排问题问题描述:贪心策略:示例代码:解释:(三)霍夫曼编码问题描述:贪心策略:示例代码:解释:(四)最小生成树(Kruskal算法)问题描述:贪心策略:示例代
- 图论——最小生成树:Prim算法及优化、Kruskal算法,及时间复杂度比较
avq94452
javac/c++
转载自——》https://www.cnblogs.com/ninedream/p/11203704.html最小生成树:一个有n个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有n个结点,并且有保持图连通的最少的边。简单来说就是有且仅有n个点n-1条边的连通图。而最小生成树就是最小权重生成树的简称,即所有边的权值之和最小的生成树。最小生成树问题一般有以下两种求解方式。一、Prim算法
- 图的最小生成树--Prim算法与Kruskal算法
MinBadGuy
数据结构与算法图论primkruskal
1.相关概念1.1生成树概念所谓一个图的生成树是一个极小连通子图,它含有图中全部的n个顶点,但只有足以构成一棵树的n-1条边。从上述定义可知,如果一个图有n个顶点和小于n-1条边,则是非连通图,如果它多余n-1条边,必定构成一个环。注意:(1)一个图可以有多棵不同的生成树;(2)具有n-1条边并不一定是生成树。1.2最小生成树给定一个连通网,在该往的所有生成树中,使得各边权值之和最小的那棵生成树称
- 图论---Kruskal(稀疏图)
快乐的小涵
图论c++算法数据结构
O(m*logn)。1,将所有边按权重从小到大排序,调用系统的sort()2,枚举每条边的a,b,权重if(a、b不联通)就将这条边加入集合中//最小生成树—Kruskal算法(稀疏图)#include#includeusingnamespacestd;constintN=200010;intn,m;intp[N];//并查集中的p数组structEdge{inta,b,w;//重载>n>>m;f
- 【图论】最小生成树——prim算法
fftx_00
图论数据结构算法
一、什么是最小生成树最小生成树(MinimumSpanningTree,MST):在一个给定的无向图G中求一棵树T,树T拥有图G的所有顶点,所有边都来自图G,使得整棵树的边权最小贪心策略:prim算法:让小树长大kruskal算法:将森林合并成树二、prim算法与Dijkstra算法区别:思想几乎完全相同,Dijkstra算法的最短距离指到源点s的最短距离;prim算法的最短距离指到集合s的最短距
- 蓝桥杯备战资料从0开始!!!(python B组)(最全面!最贴心!适合小白!蓝桥云课)图论
手可摘星chen.
蓝桥杯python图论
注:你的关注,点赞,评论让我不停更新一、蓝桥杯图论常见题型最短路径问题单源最短路径(Dijkstra算法)多源最短路径(Floyd-Warshall算法)带有负权边的最短路径(Bellman-Ford算法)最小生成树(MST)Kruskal算法(并查集+贪心)Prim算法(优先队列优化)遍历与连通性DFS/BFS求连通块强连通分量(Tarjan算法)网络流与匹配二分图匹配(匈牙利算法)最大流问题(
- 最小生成树:普里姆算法与克鲁斯卡尔算法的比较与实现
心灵深处的闪耀光芒
算法编程
最小生成树:普里姆算法与克鲁斯卡尔算法的比较与实现最小生成树(MinimumSpanningTree)是图论中的一个重要概念,用于在给定的带权无向连通图中找到一棵包含所有顶点且边权值之和最小的树。在解决最小生成树问题时,普里姆算法(Prim’salgorithm)和克鲁斯卡尔算法(Kruskal’salgorithm)是两种常用的方法。本文将对这两种算法进行比较,并提供相应的源代码实现。普里姆算法
- Java数据结构实战项目集:算法与GUI实现
DarthP
本文还有配套的精品资源,点击获取简介:Java中的数据结构和算法是提高数据处理效率的关键。本项目集包括了Java实现的几种核心数据结构和算法,例如图算法Dijkstra和Kruskal以及编码技术Huffman编码,并详细探讨了它们的工作原理和应用。Dijkstra算法用于找到图中两点间的最短路径,Kruskal算法用于最小生成树问题,而Huffman编码则用于数据压缩。通过GUI界面的交互,项目
- Kruskal 算法介绍
chengqiuming
数据结构与算法Kruskal算法最小生成树图论连通分支贪心选择
一点睛构造最小生成树还有一种算法,即Kruskal算法:设图G=(V,E)是无向连通带权图,V={1,2,...n};设最小生成树T=(V,TE),该树的初始状态只有n个节点而无边的非连通图T=(V,{}),Kruskal算法将这n个节点看成n个孤立的连通分支。它首先将所有边都按权值从小到大排序,然后值要在T中选的边数不到n-1,就做这样贪心选择:在边集E中选择权值最小的边(i,j),如果将边(i
- 9.6.1 ACM-ICPC 数据结构 并查集
夏驰和徐策
ICPC数据结构算法并查集
9.6.1ACM-ICPC数据结构:并查集并查集简介并查集(Union-Find或DisjointSetUnion)是一种用于管理不相交集合的数据结构,主要支持两种操作:合并(Union)和查找(Find)。它在解决连通性问题、图论问题(如最小生成树的Kruskal算法)以及其他需要动态连通性维护的场景中有着广泛应用。并查集的核心思想是通过树结构表示集合中的元素,并通过路径压缩和按秩合并等优化手段
- 十六届蓝桥杯C++组备赛必看:高频算法与核心知识点梳理
A好名字A
蓝桥杯c++算法
制作不易,感谢浏览。文章目录一、避开那些"送分题"的坑1.1数据类型与极值的边界1.2STL容器使用速查表1.3C++11/14/17新特性速览(慎用高级语法)二、暴力算法的蜕变2.1搜索结果与剪枝艺术2.2动态规划(DP)的使用2.3贪心算法的使用2.4图论算法模板速记Dijkstra算法Kruskal算法(最小生成树)Floyd算法(多源最短路)2.5分治与归并排序三、常用数学思路3.1数论必
- 常见算法模板(python)
雨拾
python算法深度优先
常见算法模板(python)二分搜索(实数搜索、整数搜索)前缀和、差分数组深度优先搜索DFS宽度优先搜索BFS并查集树状数组线段树稀疏表动态规划(矩阵)快速幂字符串匹配算法-KMPFloyd算法Dijkstra算法Bellman-Ford算法SPFA算法Prim算法Kruskal算法二分搜索(实数搜索、整数搜索)#-*-coding:utf-8-*-#@Author:BYW-yuwei#@Soft
- c语言数据结构-------最小生成树(Prim和Kruskal算法)
javaisC
c语言数据结构算法
#include#include#include#include//图,邻接矩阵存储#defineMaxVertexNum100//最大顶点数typedefstruct{charvex[MaxVertexNum];//顶点表intedge[MaxVertexNum][MaxVertexNum];//边表intvernum,arcnum;//记录当前图的顶点数量和边数}MGraph;//初始化图MG
- Python和R统计检验比较各组之间的免疫浸润
亚图跨际
PythonR编程pythonr语言统计检验
统计检验用于比较各组间的免疫浸润差异,通过定量分析特定免疫细胞的浸润水平,评估它们在不同条件或组别下的显著性变化。常用方法包括t检验、Mann-WhitneyU检验、ANOVA或Kruskal-Wallis检验,选择依据数据分布及样本特点。这些分析可揭示免疫微环境特征,助力探索疾病机制、预测治疗效果或筛选潜在生物标志物,为精准医学提供数据支持。Python片段在Python中,统计检验可用于比较不
- 图论-最短路径算法总结
lkcc
笔记图论数据结构算法
文章目录图论单源最短路径全源最短路径问题最小生成树Prim算法Kruskal算法图论单源最短路径边权全部为正的时候,Dijkstra算法最优秀,还可以优先队列优化。Dijkstra算法朴素版需要循环枚举出来当前的最小值(作为优化的起点)所以可以用大顶堆来优化设置集合S存放已被访问的顶点,然后执行①②每次从集合(未被攻占)中选择与起点最短距离最小的点(记为U),访问并加入集合(被攻占)令顶点U为中介
- 代码随想录算法营Day62 | 寻宝(Prim算法,kruskal算法)
寂枫zero
算法python
寻宝(Prim算法,kruskal算法)在世界的某个区域,有一些分散的神秘岛屿,每个岛屿上都有一种珍稀的资源或者宝藏。国王打算在这些岛屿上建公路,方便运输。不同岛屿之间,路途距离不同,国王希望你可以规划建公路的方案,如何可以以最短的总公路距离将所有岛屿联通起来(注意:这是一个无向图)。给定一张地图,其中包括了所有的岛屿,以及它们之间的距离。以最小化公路建设长度,确保可以链接到所有岛屿。最小生成树P
- 多独立样本秩检验:Kruskal-Wallis检验
木子算法
非参数统计非参数检验概率论统计
多独立样本秩检验:Kruskal-Wallis检验的理论与实践一、引言在统计学中,当数据不满足正态分布或方差齐性假设时,传统的参数检验(如方差分析ANOVA)可能失效。此时,非参数检验方法(如秩检验)成为更可靠的选择。本文将详细介绍多独立样本秩检验的核心方法——Kruskal-Wallis检验,包括其理论基础、公式推导、案例分析及Python实现。二、理论基础1.问题定义假设我们有kkk个独立样本
- 算法分析-贪心算法
old-handsome
算法贪心算法算法
文章目录前言一、定义二、特点三、使用场景适用场景:何时使用部分背包问题活动安排问题最优装载问题最小生成树Prim算法:按点检索,适用于稠密图Kruskal算法:并查集+最小生成树Dijkstra算法:不能存在负权边,松弛操作总结前言本博客仅做学习笔记,如有侵权,联系后即刻更改科普:贪心算法一、定义贪心算法是指在对问题进行求解时,在每一步选择中都采取最好或者最优(最有利)的选择,从而希望最终结果是最
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f