UVA 11374(p329)----Airport Express

#include<bits/stdc++.h>
#define debu
using namespace std;
const int INF=999999;
const int maxn=1e4+50;
struct Edge
{
    int from,to,dist;
    Edge(int a=0,int b=0,int c=0):from(a),to(b),dist(c) {}
};
struct HeapNode
{
    int d,u;
    bool operator < (const HeapNode& rhs) const
    {
        return d>rhs.d;
    }
    HeapNode(int a,int b):d(a),u(b) {}
};
struct Dijkstra
{
    int n,m;
    int p[maxn];
    vector<Edge> edges;
    vector<int> G[maxn];
    bool done[maxn];
    void init(int n)
    {
        this->n=n;
        for(int i=0; i<n; i++) G[i].clear();
        edges.clear();
    }
    void AddEdge(int from,int to,int dist)
    {
        edges.push_back(Edge(from,to,dist));
        m=edges.size();
        G[from].push_back(m-1);
    }
    void dijkstra(int s,int* d,int* p)
    {
        priority_queue<HeapNode> q;
        for(int i=0; i<n; i++) d[i]=INF;
        d[s]=0;
        memset(done,0,sizeof(done));
        q.push(HeapNode(0,s));
        while(!q.empty())
        {
            HeapNode x=q.top();
            q.pop();
            int u=x.u;
            if(done[u]) continue;
            done[u]=true;
            for(int i=0; i<G[u].size(); i++)
            {
                Edge& e=edges[G[u][i]];
                if(d[e.to]>d[u]+e.dist)
                {
                    d[e.to]=d[u]+e.dist;
                    p[e.to]=e.from;
                    q.push(HeapNode(d[e.to],e.to));
                }
            }
        }
    }
};
int cas=0;
int answer;
int n,s,t,m,k;
Dijkstra ans;
int pos1,pos2;
int num1,num2;
vector<int> step;
vector<Edge> fast;
int p1[maxn],p2[maxn];
int d1[maxn],d2[maxn];
void solve()
{
    int ans=d1[t];
   // cout<<ans<<" ans"<<endl;
    pos1=-1;pos2=-1;
    for(int i=0; i<fast.size(); i++)
    {
        int x=fast[i].from;
        int y=fast[i].to;
        int z=fast[i].dist;
       // cout<<"flag "<<x<<" "<<y<<" "<<z<<endl;
        if(ans>d1[x]+z+d2[y])
        {
            ans=d1[x]+z+d2[y];
            pos1=x;
            pos2=y;
        }
        if(ans>d1[y]+z+d2[x])
        {
            ans=d1[y]+z+d2[x];
            pos1=y;
            pos2=x;
        }
    }
    //cout<<pos1<<" "<<pos2<<endl;
    answer=ans;
}
int way(int pos,int*p)
{
    while(pos!=-1)
    {
        step.push_back(pos+1);
        pos=p[pos];
    }
    return step.size();
}
void output()
{
    for(int i=num1-1;i>=0;i--)
        printf("%d ",step[i]);
    for(int i=num1;i<num2-1;i++)
        printf("%d ",step[i]);
    printf("%d\n",step[num2-1]);
}
int main()
{
#ifdef debug
    freopen("in.in","r",stdin);
#endif // debug
    while(scanf("%d%d%d",&n,&s,&t)!=EOF)
    {
        cas++;
        if(cas!=1) printf("\n");
        s--;t--;
        fast.clear();
        step.clear();
        ans.init(n);
        scanf("%d",&m);
        memset(p1,-1,sizeof(p1));
        memset(p2,-1,sizeof(p2));
        for(int i=0; i<m; i++)
        {
            int x,y,w;
            scanf("%d%d%d",&x,&y,&w);
            x--;y--;
            ans.AddEdge(x,y,w);
            ans.AddEdge(y,x,w);
        }
        scanf("%d",&k);
        for(int i=0; i<k; i++)
        {
            int x,y,w;
            scanf("%d%d%d",&x,&y,&w);
            x--;y--;
            fast.push_back(Edge(x,y,w));
            fast.push_back(Edge(y,x,w));
        }
        ans.dijkstra(s,d1,p1);
        ans.dijkstra(t,d2,p2);
        solve();
        if(pos1!=-1)
        {
            num1=way(pos1,p1);
            num2=way(pos2,p2);
            output();
            printf("%d\n",pos1+1);
            printf("%d\n",answer);
        }
        else
        {
            num1=way(t,p1);
            for(int i=num1-1;i>0;i--)
                printf("%d ",step[i]);
            printf("%d\n",step[0]);
            printf("Ticket Not Used\n");
            printf("%d\n",answer);
        }
    }
    return 0;
}

题目地址:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=25&page=show_problem&problem=2369

题解:将路线分成三部分:s到a,a到b(a-b即为坐商业线),b到t。运行两次Dijkstra,求出s到每个点的最短距离d1和t到每个点的最短距离d2,枚举每条商业线a-b 则ans=min{d1[a]+w+d2[b],ans}(a,b可互换(无向边))ans初值为直接从s到t的最短路(也即不经过任何商业线的路径)。注意路径输出:由终点不断推向起点(挂了好几次)。

你可能感兴趣的:(UVA 11374(p329)----Airport Express)