caffe代码阅读1:blob的实现细节-2016.3.14

caffe 中 BLOB的实现


一、前言

等着caffe没有膨胀到很大的程度把caffe的代码理一理
(1)第一次阅读Caffe的源码,给人的印象就是里面大量使用了gtest,确实也简化了不少代码,看起来很清晰。
(2)caffe的文档是使用doxygen来生成的,这点在注释里面有体现,对于自己以后的项目也可以借鉴。

二、相关知识:

(1) explicit关键字的作用是禁止隐式转换
比如
A a();
B b = a;// 编译错误
B b(a); //正确
(2)关于const的用法具体参考:
http://blog.csdn.net/Eric_Jo/article/details/4138548


三、具体介绍

BLOB介绍:
看过代码之后,实际上BLOL包含了三类数据
(1)data,前向传播所用到的数据
(2)diff,反向传播所用到的数据
(3)shape,解释data和diff的shape数据
那么围绕这三类数据有对应的方法。
下面给出我的具体的注释:
首先给出blob.h的注释
#ifndef CAFFE_BLOB_HPP_
#define CAFFE_BLOB_HPP_

#include <algorithm>
#include <string>
#include <vector>

#include "caffe/common.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/syncedmem.hpp"
#include "caffe/util/math_functions.hpp"

const int kMaxBlobAxes = 32;

namespace caffe {

/**
 * @brief A wrapper around SyncedMemory holders serving as the basic
 *        computational unit through which Layer%s, Net%s, and Solver%s
 *        interact.
 *  BLOB是SyncedMemory的包裹器
 *
 * TODO(dox): more thorough description.
 */
template <typename Dtype>
class Blob {
 public:
  // 构造函数
  Blob()
       : data_(), diff_(), count_(0), capacity_(0) {}

  /// @brief Deprecated; use <code>Blob(const vector<int>& shape)</code>.
  explicit Blob(const int num, const int channels, const int height,
      const int width);
  explicit Blob(const vector<int>& shape);// 推荐使用这个

  // 成员函数
  /// @brief Deprecated; use <code>Reshape(const vector<int>& shape)</code>.
  void Reshape(const int num, const int channels, const int height,
      const int width);
  /**
   * @brief Change the dimensions of the blob, allocating new memory if
   *        necessary.
   *
   * This function can be called both to create an initial allocation
   * of memory, and to adjust the dimensions of a top blob during Layer::Reshape
   * or Layer::Forward. When changing the size of blob, memory will only be
   * reallocated if sufficient memory does not already exist, and excess memory
   * will never be freed.
   *
   * Note that reshaping an input blob and immediately calling Net::Backward is
   * an error; either Net::Forward or Net::Reshape need to be called to
   * propagate the new input shape to higher layers.
   */
  void Reshape(const vector<int>& shape); // 推荐使用这个
  void Reshape(const BlobShape& shape);
  void ReshapeLike(const Blob& other);
  // 输出数据的维度,以空格分隔,最后输出一维维度(total)
  inline string shape_string() const {
    ostringstream stream;
    for (int i = 0; i < shape_.size(); ++i) {
      stream << shape_[i] << " ";
    }
    stream << "(" << count_ << ")";
    return stream.str();
  }
  inline const vector<int>& shape() const { return shape_; }
  /**
   * @brief Returns the dimension of the index-th axis (or the negative index-th
   *        axis from the end, if index is negative).
   *
   * @param index the axis index, which may be negative as it will be
   *        "canonicalized" using CanonicalAxisIndex.
   *        Dies on out of range index.
   */
   // 计算从给定维度到最后一个维度的
  inline int shape(int index) const {
    return shape_[CanonicalAxisIndex(index)];
  }
  // 返回数据的维度
  inline int num_axes() const { return shape_.size(); }
  // 返回数据的所有维度的相乘,即数据的个数
  inline int count() const { return count_; }

  /**
   * @brief Compute the volume of a slice; i.e., the product of dimensions
   *        among a range of axes.
   *
   * @param start_axis The first axis to include in the slice.
   *
   * @param end_axis The first axis to exclude from the slice.
   */
  inline int count(int start_axis, int end_axis) const {
    // 判断维度的索引是否在范围内
    CHECK_LE(start_axis, end_axis);
    CHECK_GE(start_axis, 0);
    CHECK_GE(end_axis, 0);
    CHECK_LE(start_axis, num_axes());
    CHECK_LE(end_axis, num_axes());
    int count = 1;
    for (int i = start_axis; i < end_axis; ++i) {
      count *= shape(i);
    }
    return count;
  }
  /**
   * @brief Compute the volume of a slice spanning from a particular first
   *        axis to the final axis.
   *
   * @param start_axis The first axis to include in the slice.
   */
   // 给定的维度到最后的维度之间包含的数据个数
  inline int count(int start_axis) const {
    return count(start_axis, num_axes());
  }

  /**
   * @brief Returns the 'canonical' version of a (usually) user-specified axis,
   *        allowing for negative indexing (e.g., -1 for the last axis).
   *
   * @param axis_index the axis index.
   *        If 0 <= index < num_axes(), return index.
   *        If -num_axes <= index <= -1, return (num_axes() - (-index)),
   *        e.g., the last axis index (num_axes() - 1) if index == -1,
   *        the second to last if index == -2, etc.
   *        Dies on out of range index.
   */
  // 支持负数维度索引,负数表示从后往前,返回的是正确的维度索引(相当于将负数索引进行的转换)
  inline int CanonicalAxisIndex(int axis_index) const {
    // 判断是否在范围内[-numaxes, numaxes]
    CHECK_GE(axis_index, -num_axes())
        << "axis " << axis_index << " out of range for " << num_axes()
        << "-D Blob with shape " << shape_string();
    CHECK_LT(axis_index, num_axes())
        << "axis " << axis_index << " out of range for " << num_axes()
        << "-D Blob with shape " << shape_string();
    if (axis_index < 0) {
      return axis_index + num_axes();
    }
    return axis_index;
  }

  /// @brief Deprecated legacy shape accessor num: use shape(0) instead.
  inline int num() const { return LegacyShape(0); }
  /// @brief Deprecated legacy shape accessor channels: use shape(1) instead.
  inline int channels() const { return LegacyShape(1); }
  /// @brief Deprecated legacy shape accessor height: use shape(2) instead.
  inline int height() const { return LegacyShape(2); }
  /// @brief Deprecated legacy shape accessor width: use shape(3) instead.
  inline int width() const { return LegacyShape(3); }
  inline int LegacyShape(int index) const {
    CHECK_LE(num_axes(), 4)// 检查blob的维度个数是不是小于4,也许以前的blob只有四维,但是现在的blob应该为了通用而采用了大于四维的方法
        << "Cannot use legacy accessors on Blobs with > 4 axes.";
    CHECK_LT(index, 4);// 检查维度索引是不是小于4
    CHECK_GE(index, -4);// 检查维度索引是不是大于-4
    if (index >= num_axes() || index < -num_axes()) {
      // Axis is out of range, but still in [0, 3] (or [-4, -1] for reverse
      // indexing) -- this special case simulates the one-padding used to fill
      // extraneous axes of legacy blobs.
      return 1;
    }
    return shape(index);
  }
  // 计算一维线性偏移量
  inline int offset(const int n, const int c = 0, const int h = 0,
      const int w = 0) const {
    CHECK_GE(n, 0);
    CHECK_LE(n, num());
    CHECK_GE(channels(), 0);
    CHECK_LE(c, channels());
    CHECK_GE(height(), 0);
    CHECK_LE(h, height());
    CHECK_GE(width(), 0);
    CHECK_LE(w, width());
    return ((n * channels() + c) * height() + h) * width() + w;
  }
  // 计算一维线性偏移量,只不过参数用的是vector<int>
  inline int offset(const vector<int>& indices) const {
    CHECK_LE(indices.size(), num_axes());
    int offset = 0;
    for (int i = 0; i < num_axes(); ++i) {
      offset *= shape(i);
      if (indices.size() > i) {
        CHECK_GE(indices[i], 0);
        CHECK_LT(indices[i], shape(i));
        offset += indices[i];
      }
    }
    return offset;
  }
  /**
   * @brief Copy from a source Blob.
   *
   * @param source the Blob to copy from
   * @param copy_diff if false, copy the data; if true, copy the diff
   * @param reshape if false, require this Blob to be pre-shaped to the shape
   *        of other (and die otherwise); if true, Reshape this Blob to other's
   *        shape if necessary
   * 从给定的blob进行复制,如果copy_diff=true则新的blob复制的是diff,如果reshape=true则改变新blob的形状
   */
  void CopyFrom(const Blob<Dtype>& source, bool copy_diff = false,
      bool reshape = false);
  // 获取在内存下的数据(前向传播所用的数据)
  inline Dtype data_at(const int n, const int c, const int h,
      const int w) const {
    return cpu_data()[offset(n, c, h, w)];
  }
  // 获取在内存下的diff数据(反传数据)
  inline Dtype diff_at(const int n, const int c, const int h,
      const int w) const {
    return cpu_diff()[offset(n, c, h, w)];
  }
  // 获取在内存下的数据(前向传播所用的数据)
  inline Dtype data_at(const vector<int>& index) const {
    return cpu_data()[offset(index)];
  }
  // 获取在内存下的diff数据(反传数据)
  inline Dtype diff_at(const vector<int>& index) const {
    return cpu_diff()[offset(index)];
  }
  // 同步内存shared_ptr(不明白share_ptr的可以自行百度,引用计数管理机制)
  inline const shared_ptr<SyncedMemory>& data() const {
    CHECK(data_);
    return data_;
  }

  inline const shared_ptr<SyncedMemory>& diff() const {
    CHECK(diff_);
    return diff_;
  }

  // 属性
  const Dtype* cpu_data() const;
  void set_cpu_data(Dtype* data);
  const int* gpu_shape() const;
  const Dtype* gpu_data() const;
  const Dtype* cpu_diff() const;
  const Dtype* gpu_diff() const;
  Dtype* mutable_cpu_data();
  Dtype* mutable_gpu_data();
  Dtype* mutable_cpu_diff();
  Dtype* mutable_gpu_diff();
  // 计算\[Y=alpha * X +beta*Y \]
  void Update();
  // 从protobuf序列化文件读取blob对象
  void FromProto(const BlobProto& proto, bool reshape = true);
  // 将对象序列化为protobuf文件
  void ToProto(BlobProto* proto, bool write_diff = false) const;

  /// @brief Compute the sum of absolute values (L1 norm) of the data.
  Dtype asum_data() const;
  /// @brief Compute the sum of absolute values (L1 norm) of the diff.
  Dtype asum_diff() const;
  /// @brief Compute the sum of squares (L2 norm squared) of the data.
  Dtype sumsq_data() const;
  /// @brief Compute the sum of squares (L2 norm squared) of the diff.
  Dtype sumsq_diff() const;

  /// @brief Scale the blob data by a constant factor.
  void scale_data(Dtype scale_factor);
  /// @brief Scale the blob diff by a constant factor.
  void scale_diff(Dtype scale_factor);

  /**
   * @brief Set the data_ shared_ptr to point to the SyncedMemory holding the
   *        data_ of Blob other -- useful in Layer%s which simply perform a copy
   *        in their Forward pass.
   *
   * This deallocates the SyncedMemory holding this Blob's data_, as
   * shared_ptr calls its destructor when reset with the "=" operator.
   */
  void ShareData(const Blob& other);
  /**
   * @brief Set the diff_ shared_ptr to point to the SyncedMemory holding the
   *        diff_ of Blob other -- useful in Layer%s which simply perform a copy
   *        in their Forward pass.
   *
   * This deallocates the SyncedMemory holding this Blob's diff_, as
   * shared_ptr calls its destructor when reset with the "=" operator.
   * 将别的blob的data和响应的diff指针给这个Blob,实现数据的共享。
   * 同时需要注意的是这个操作会引起这个Blob里面的SyncedMemory被释放,
   * 因为shared_ptr指针被用=重置的时候回调用响应的析构器。
   */
  void ShareDiff(const Blob& other);
  // 判断形状是否相等
  bool ShapeEquals(const BlobProto& other);

 protected:
  // 前向传播的数据
  shared_ptr<SyncedMemory> data_;
  // diff是反向传播的数据
  shared_ptr<SyncedMemory> diff_;
  // 旧的形状数据
  shared_ptr<SyncedMemory> shape_data_;
  // 新的形状数据
  vector<int> shape_;
  // 数据的个数
  int count_;
  // 容量
  int capacity_;

  DISABLE_COPY_AND_ASSIGN(Blob);
};  // class Blob

}  // namespace caffe

#endif  // CAFFE_BLOB_HPP_

接下来给出blob所对应的实现
blob.cpp的注释
#include <climits>
#include <vector>

#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/syncedmem.hpp"
#include "caffe/util/math_functions.hpp"

namespace caffe {

// reshape 的具体实现
// 过时的方法最终是调用的新的reshape方法
template <typename Dtype>
void Blob<Dtype>::Reshape(const int num, const int channels, const int height,
    const int width) {
  vector<int> shape(4);
  shape[0] = num;
  shape[1] = channels;
  shape[2] = height;
  shape[3] = width;
  Reshape(shape);
}

// reshape 的具体实现
template <typename Dtype>
void Blob<Dtype>::Reshape(const vector<int>& shape) {
  CHECK_LE(shape.size(), kMaxBlobAxes); //是否小于规定的最大BLOB的维度(35维)
  count_ = 1;
  shape_.resize(shape.size());// 首先将大小设置为vector<int> shape_; 即新的形状数据的大小
  if (!shape_data_ || shape_data_->size() < shape.size() * sizeof(int)) {
    shape_data_.reset(new SyncedMemory(shape.size() * sizeof(int)));//  shared_ptr<SyncedMemory> shape_data_;
  }
  int* shape_data = static_cast<int*>(shape_data_->mutable_cpu_data());
  for (int i = 0; i < shape.size(); ++i) {
    // 检查形状数据是否合法
    CHECK_GE(shape[i], 0);
    CHECK_LE(shape[i], INT_MAX / count_) << "blob size exceeds INT_MAX";
    // 计算数据个数
    count_ *= shape[i];
    // 复制shape到新的和旧的形状数据
    shape_[i] = shape[i];
    shape_data[i] = shape[i];
  }
  // 判断是否大于存储的容量
  if (count_ > capacity_) {
    capacity_ = count_;
    // 重新分配内存
    data_.reset(new SyncedMemory(capacity_ * sizeof(Dtype)));
    diff_.reset(new SyncedMemory(capacity_ * sizeof(Dtype)));
  }
}

// 所谓的reshape实际上就仅仅是复制了shape的数据而已
// 在调用的时候自动乘以shape的数据就可以得到数据,有点tricky
template <typename Dtype>
void Blob<Dtype>::Reshape(const BlobShape& shape) {
  // 维度是否小于35
  CHECK_LE(shape.dim_size(), kMaxBlobAxes);
  // 复制形状数据
  vector<int> shape_vec(shape.dim_size());
  for (int i = 0; i < shape.dim_size(); ++i) {
    shape_vec[i] = shape.dim(i);
  }
  // 调用新的reshape函数
  Reshape(shape_vec);
}

template <typename Dtype>
void Blob<Dtype>::ReshapeLike(const Blob<Dtype>& other) {
  Reshape(other.shape());
}

template <typename Dtype>
Blob<Dtype>::Blob(const int num, const int channels, const int height,
    const int width)
  // capacity_ must be initialized before calling Reshape
  // 技巧,先初始化容量为0,然后用reshape来分配内存了
  : capacity_(0) {
  Reshape(num, channels, height, width);
}

template <typename Dtype>
Blob<Dtype>::Blob(const vector<int>& shape)
  // capacity_ must be initialized before calling Reshape
  : capacity_(0) {
  Reshape(shape);
}

template <typename Dtype>
const int* Blob<Dtype>::gpu_shape() const {
  CHECK(shape_data_);
  // shared_ptr<SyncedMemory> shape_data_;
  // 因此也分gpu_data和cpu_data
  return (const int*)shape_data_->gpu_data();
}

template <typename Dtype>
const Dtype* Blob<Dtype>::cpu_data() const {
  CHECK(data_);
  / shared_ptr<SyncedMemory> data_;
  return (const Dtype*)data_->cpu_data();
}

template <typename Dtype>
void Blob<Dtype>::set_cpu_data(Dtype* data) {
  CHECK(data);
  data_->set_cpu_data(data);
}

template <typename Dtype>
const Dtype* Blob<Dtype>::gpu_data() const {
  CHECK(data_);
  return (const Dtype*)data_->gpu_data();
}

template <typename Dtype>
const Dtype* Blob<Dtype>::cpu_diff() const {
  CHECK(diff_);
  return (const Dtype*)diff_->cpu_data();
}

template <typename Dtype>
const Dtype* Blob<Dtype>::gpu_diff() const {
  CHECK(diff_);
  return (const Dtype*)diff_->gpu_data();
}

template <typename Dtype>
Dtype* Blob<Dtype>::mutable_cpu_data() {
  CHECK(data_);
  return static_cast<Dtype*>(data_->mutable_cpu_data());
}

template <typename Dtype>
Dtype* Blob<Dtype>::mutable_gpu_data() {
  CHECK(data_);
  return static_cast<Dtype*>(data_->mutable_gpu_data());
}

template <typename Dtype>
Dtype* Blob<Dtype>::mutable_cpu_diff() {
  CHECK(diff_);
  return static_cast<Dtype*>(diff_->mutable_cpu_data());
}

template <typename Dtype>
Dtype* Blob<Dtype>::mutable_gpu_diff() {
  CHECK(diff_);
  return static_cast<Dtype*>(diff_->mutable_gpu_data());
}

// 将其他blob的数据复制到当前的blob中去
template <typename Dtype>
void Blob<Dtype>::ShareData(const Blob& other) {
  CHECK_EQ(count_, other.count());
  data_ = other.data();
}
// 将其他blob的diff数据复制到当前的blob中去
template <typename Dtype>
void Blob<Dtype>::ShareDiff(const Blob& other) {
  CHECK_EQ(count_, other.count());
  diff_ = other.diff();
}

// The "update" method is used for parameter blobs in a Net, which are stored
// as Blob<float> or Blob<double> -- hence we do not define it for
// Blob<int> or Blob<unsigned int>.
template <> void Blob<unsigned int>::Update() { NOT_IMPLEMENTED; }
template <> void Blob<int>::Update() { NOT_IMPLEMENTED; }


// Update是计算data=-1 * diff + data
template <typename Dtype>
void Blob<Dtype>::Update() {
  // We will perform update based on where the data is located.
  switch (data_->head()) {
  case SyncedMemory::HEAD_AT_CPU:
    // perform computation on CPU
    // axpby即alpha * x plus beta *y 这个含义,blas的函数命名真是见名知意
    // template <> void caffe_axpy<float>(const int N, const float alpha, const float* X, float* Y) { cblas_saxpy(N, alpha, X, 1, Y, 1); }
    // caffe_axpy计算的是Y=alpha * X + Y ,其中alpha=-1了这里
    // 存储的时候用到了mutable_cpu_data,防止其他线程访问
    caffe_axpy<Dtype>(count_, Dtype(-1),
        static_cast<const Dtype*>(diff_->cpu_data()),
        static_cast<Dtype*>(data_->mutable_cpu_data()));
    break;
  case SyncedMemory::HEAD_AT_GPU:
  case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
    // perform computation on GPU
    // Y=alpha * X + Y ,其中alpha=-1了这里
    caffe_gpu_axpy<Dtype>(count_, Dtype(-1),
        static_cast<const Dtype*>(diff_->gpu_data()),
        static_cast<Dtype*>(data_->mutable_gpu_data()));
#else
    NO_GPU;
#endif
    break;
  default:
    LOG(FATAL) << "Syncedmem not initialized.";
  }
}

template <> unsigned int Blob<unsigned int>::asum_data() const {
  NOT_IMPLEMENTED;
  return 0;
}

template <> int Blob<int>::asum_data() const {
  NOT_IMPLEMENTED;
  return 0;
}
// 计算data的L1范数
template <typename Dtype>
Dtype Blob<Dtype>::asum_data() const {
  if (!data_) { return 0; }
  switch (data_->head()) {
  case SyncedMemory::HEAD_AT_CPU:
    return caffe_cpu_asum(count_, cpu_data());
  case SyncedMemory::HEAD_AT_GPU:
  case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
  {
    Dtype asum;
    caffe_gpu_asum(count_, gpu_data(), &asum);
    return asum;
  }
#else
    NO_GPU;
#endif
  case SyncedMemory::UNINITIALIZED:
    return 0;
  default:
    LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
  }
  return 0;
}

template <> unsigned int Blob<unsigned int>::asum_diff() const {
  NOT_IMPLEMENTED;
  return 0;
}

template <> int Blob<int>::asum_diff() const {
  NOT_IMPLEMENTED;
  return 0;
}

// 计算diff的L1范数
template <typename Dtype>
Dtype Blob<Dtype>::asum_diff() const {
  if (!diff_) { return 0; }
  switch (diff_->head()) {
  case SyncedMemory::HEAD_AT_CPU:
    return caffe_cpu_asum(count_, cpu_diff());
  case SyncedMemory::HEAD_AT_GPU:
  case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
  {
    Dtype asum;
    caffe_gpu_asum(count_, gpu_diff(), &asum);
    return asum;
  }
#else
    NO_GPU;
#endif
  case SyncedMemory::UNINITIALIZED:
    return 0;
  default:
    LOG(FATAL) << "Unknown SyncedMemory head state: " << diff_->head();
  }
  return 0;
}

template <> unsigned int Blob<unsigned int>::sumsq_data() const {
  NOT_IMPLEMENTED;
  return 0;
}

template <> int Blob<int>::sumsq_data() const {
  NOT_IMPLEMENTED;
  return 0;
}

// 计算sum of square of data(L2范数)
template <typename Dtype>
Dtype Blob<Dtype>::sumsq_data() const {
  Dtype sumsq;
  const Dtype* data;
  if (!data_) { return 0; }
  switch (data_->head()) {
  case SyncedMemory::HEAD_AT_CPU:
    data = cpu_data();
    sumsq = caffe_cpu_dot(count_, data, data);
    break;
  case SyncedMemory::HEAD_AT_GPU:
  case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
    data = gpu_data();
    caffe_gpu_dot(count_, data, data, &sumsq);
#else
    NO_GPU;
#endif
    break;
  case SyncedMemory::UNINITIALIZED:
    return 0;
  default:
    LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
  }
  return sumsq;
}

template <> unsigned int Blob<unsigned int>::sumsq_diff() const {
  NOT_IMPLEMENTED;
  return 0;
}

template <> int Blob<int>::sumsq_diff() const {
  NOT_IMPLEMENTED;
  return 0;
}

// sum of square of diff
template <typename Dtype>
Dtype Blob<Dtype>::sumsq_diff() const {
  Dtype sumsq;
  const Dtype* diff;
  if (!diff_) { return 0; }
  switch (diff_->head()) {
  case SyncedMemory::HEAD_AT_CPU:
    diff = cpu_diff();
    sumsq = caffe_cpu_dot(count_, diff, diff);
    break;
  case SyncedMemory::HEAD_AT_GPU:
  case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
    diff = gpu_diff();
    caffe_gpu_dot(count_, diff, diff, &sumsq);
    break;
#else
    NO_GPU;
#endif
  case SyncedMemory::UNINITIALIZED:
    return 0;
  default:
    LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
  }
  return sumsq;
}

template <> void Blob<unsigned int>::scale_data(unsigned int scale_factor) {
  NOT_IMPLEMENTED;
}

template <> void Blob<int>::scale_data(int scale_factor) {
  NOT_IMPLEMENTED;
}

// 将data部分乘以一个因子scale_factor
template <typename Dtype>
void Blob<Dtype>::scale_data(Dtype scale_factor) {
  Dtype* data;
  if (!data_) { return; }
  switch (data_->head()) {
  case SyncedMemory::HEAD_AT_CPU:
    data = mutable_cpu_data();
    caffe_scal(count_, scale_factor, data);
    return;
  case SyncedMemory::HEAD_AT_GPU:
  case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
    data = mutable_gpu_data();
    caffe_gpu_scal(count_, scale_factor, data);
    return;
#else
    NO_GPU;
#endif
  case SyncedMemory::UNINITIALIZED:
    return;
  default:
    LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
  }
}

template <> void Blob<unsigned int>::scale_diff(unsigned int scale_factor) {
  NOT_IMPLEMENTED;
}

template <> void Blob<int>::scale_diff(int scale_factor) {
  NOT_IMPLEMENTED;
}
// 将diff部分乘以一个因子sacle_factor
template <typename Dtype>
void Blob<Dtype>::scale_diff(Dtype scale_factor) {
  Dtype* diff;
  if (!diff_) { return; }
  switch (diff_->head()) {
  case SyncedMemory::HEAD_AT_CPU:
    diff = mutable_cpu_diff();
    caffe_scal(count_, scale_factor, diff);
    return;
  case SyncedMemory::HEAD_AT_GPU:
  case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
    diff = mutable_gpu_diff();
    caffe_gpu_scal(count_, scale_factor, diff);
    return;
#else
    NO_GPU;
#endif
  case SyncedMemory::UNINITIALIZED:
    return;
  default:
    LOG(FATAL) << "Unknown SyncedMemory head state: " << diff_->head();
  }
}

// 两个blob是否shape一样
template <typename Dtype>
bool Blob<Dtype>::ShapeEquals(const BlobProto& other) {
  // 判断是否是旧的blob
  if (other.has_num() || other.has_channels() ||
      other.has_height() || other.has_width()) {
    // Using deprecated 4D Blob dimensions --
    // shape is (num, channels, height, width).
    // Note: we do not use the normal Blob::num(), Blob::channels(), etc.
    // methods as these index from the beginning of the blob shape, where legacy
    // parameter blobs were indexed from the end of the blob shape (e.g., bias
    // Blob shape (1 x 1 x 1 x N), IP layer weight Blob shape (1 x 1 x M x N)).
    return shape_.size() <= 4 &&
           LegacyShape(-4) == other.num() &&
           LegacyShape(-3) == other.channels() &&
           LegacyShape(-2) == other.height() &&
           LegacyShape(-1) == other.width();
  }
  // 如果不是旧的blob则直接判断
  vector<int> other_shape(other.shape().dim_size());
  for (int i = 0; i < other.shape().dim_size(); ++i) {
    other_shape[i] = other.shape().dim(i);
  }
  return shape_ == other_shape;
}

// 从别的blob进行复制
template <typename Dtype>
void Blob<Dtype>::CopyFrom(const Blob& source, bool copy_diff, bool reshape) {
  if (source.count() != count_ || source.shape() != shape_) {
    if (reshape) {
      ReshapeLike(source);// 复制shape数据
    } else {
      LOG(FATAL) << "Trying to copy blobs of different sizes.";
    }
  }
  switch (Caffe::mode()) {
  case Caffe::GPU:
    // GPU复制diff
    if (copy_diff) {
        // 这都用 template <> void caffe_copy<float>(const int N, const float* X, float* Y) { cblas_scopy(N, X, 1, Y, 1); }
        // 干嘛要用BLAS里面的运算来复制,真是多余...
      caffe_copy(count_, source.gpu_diff(),
          static_cast<Dtype*>(diff_->mutable_gpu_data()));
    } else {
      caffe_copy(count_, source.gpu_data(),
          static_cast<Dtype*>(data_->mutable_gpu_data()));
    }
    break;
  case Caffe::CPU:
    // CPU复制diff
    if (copy_diff) {
      caffe_copy(count_, source.cpu_diff(),
          static_cast<Dtype*>(diff_->mutable_cpu_data()));
    } else {
      caffe_copy(count_, source.cpu_data(),
          static_cast<Dtype*>(data_->mutable_cpu_data()));
    }
    break;
  default:
    LOG(FATAL) << "Unknown caffe mode.";
  }
}

template <typename Dtype>
void Blob<Dtype>::FromProto(const BlobProto& proto, bool reshape) {
  // copy shape
  if (reshape) {
    vector<int> shape;
    if (proto.has_num() || proto.has_channels() ||
        proto.has_height() || proto.has_width()) {
      // Using deprecated 4D Blob dimensions --
      // shape is (num, channels, height, width).
      // 如果是旧的blob直接转换为新的blob中的shape数据
      shape.resize(4);
      shape[0] = proto.num();
      shape[1] = proto.channels();
      shape[2] = proto.height();
      shape[3] = proto.width();
    } else {
      shape.resize(proto.shape().dim_size());
      for (int i = 0; i < proto.shape().dim_size(); ++i) {
        shape[i] = proto.shape().dim(i);
      }
    }
    Reshape(shape);// 复制shape数据到当前blob
  } else {
    CHECK(ShapeEquals(proto)) << "shape mismatch (reshape not set)";
  }
  // copy data
  Dtype* data_vec = mutable_cpu_data();// 获取当前的blob在内存上的数据指针,该指针是互斥的
  if (proto.double_data_size() > 0) {// data
    CHECK_EQ(count_, proto.double_data_size());
    for (int i = 0; i < count_; ++i) {
      data_vec[i] = proto.double_data(i);
    }
  } else {
    CHECK_EQ(count_, proto.data_size());
    for (int i = 0; i < count_; ++i) {
      data_vec[i] = proto.data(i);
    }
  }
  // copy diff
  if (proto.double_diff_size() > 0) {// diff
    CHECK_EQ(count_, proto.double_diff_size());
    Dtype* diff_vec = mutable_cpu_diff();// 获取当前的diff在内存上的数据指针,该指针是互斥的
    for (int i = 0; i < count_; ++i) {
      diff_vec[i] = proto.double_diff(i);
    }
  } else if (proto.diff_size() > 0) {
    CHECK_EQ(count_, proto.diff_size());
    Dtype* diff_vec = mutable_cpu_diff();
    for (int i = 0; i < count_; ++i) {
      diff_vec[i] = proto.diff(i);
    }
  }
}

// BlobProto和BlobShape是protobuf定义的,其中一些函数是自动生成的
// mutable_shape、add_dim、clear_double_data、clear_double_diff、add_double_data
// add_double_diff等
// 见src/caffe/proto/caffe.proto
template <>
void Blob<double>::ToProto(BlobProto* proto, bool write_diff) const {
  proto->clear_shape();
  // 存shape
  for (int i = 0; i < shape_.size(); ++i) {
    proto->mutable_shape()->add_dim(shape_[i]);
  }

  proto->clear_double_data();
  proto->clear_double_diff();
  // 存data
  const double* data_vec = cpu_data();
  for (int i = 0; i < count_; ++i) {
    proto->add_double_data(data_vec[i]);
  }
  // 存diff
  if (write_diff) {
    const double* diff_vec = cpu_diff();
    for (int i = 0; i < count_; ++i) {
      proto->add_double_diff(diff_vec[i]);
    }
  }
}

template <>
void Blob<float>::ToProto(BlobProto* proto, bool write_diff) const {
  proto->clear_shape();
  for (int i = 0; i < shape_.size(); ++i) {
    proto->mutable_shape()->add_dim(shape_[i]);
  }
  proto->clear_data();
  proto->clear_diff();
  const float* data_vec = cpu_data();
  for (int i = 0; i < count_; ++i) {
    proto->add_data(data_vec[i]);
  }
  if (write_diff) {
    const float* diff_vec = cpu_diff();
    for (int i = 0; i < count_; ++i) {
      proto->add_diff(diff_vec[i]);
    }
  }
}

INSTANTIATE_CLASS(Blob);
template class Blob<int>;
template class Blob<unsigned int>;

}  // namespace caffe


总结:
还是那句老话,read the fxxx source code.
多翻caffe的issue看

参考:
[1]caffe源码分析另一个,写的也挺好。
http://www.cnblogs.com/louyihang-loves-baiyan/
http://www.cnblogs.com/louyihang-loves-baiyan/p/5149628.html
[2]常用的BLAS含义参考
http://www.cnblogs.com/huashiyiqike/p/3886670.html
http://www.netlib.org/blas/
[3]protobuf的参考
http://www.w2bc.com/Article/34963

你可能感兴趣的:(caffe代码阅读1:blob的实现细节-2016.3.14)