spoj687 REPEATS

传送门:http://www.spoj.com/problems/REPEATS/

思路:又是一道论文题。

论文上是这么说的


这题用到了枚举长度的方法,往后匹配我们只要看两个后缀的LCP即可,而往前匹配,一个显然的做法是把串反过来,接到后面看对应的后缀的LCP。实际上并不需要这样,我们只需要看它还差几个字符就可以是循环次数加1,那我们就往前移这么多位,看这两个后缀的LCP长度是否足够,足够就加1(最多也只会加1,因为如果加2,那么这个答案就会被上一次枚举统计过了。)


#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
const int maxn=100010;
using namespace std;
int T,n,t1[maxn],t2[maxn],sum[maxn],rank[maxn],sa[maxn],st[maxn][20],h[maxn],maxs;char s[maxn],c[5];

void getsa(){
	memset(sum,0,sizeof(sum));
	int *x=t1,*y=t2,m=255,p=0;
	for (int i=1;i<=n;i++) sum[x[i]=s[i]]++;
	for (int i=1;i<=m;i++) sum[i]+=sum[i-1];
	for (int i=n;i;i--) sa[sum[x[i]]--]=i;
	for (int j=1;p<n;j<<=1,m=p){
		p=0;
		for (int i=n-j+1;i<=n;i++) y[++p]=i;
		for (int i=1;i<=n;i++) if (sa[i]>j) y[++p]=sa[i]-j;
		memset(sum,0,sizeof(sum));
		for (int i=1;i<=n;i++) sum[x[y[i]]]++;
		for (int i=1;i<=m;i++) sum[i]+=sum[i-1];
		for (int i=n;i;i--) sa[sum[x[y[i]]]--]=y[i];
		swap(x,y),x[sa[1]]=p=1;
		for (int i=2;i<=n;i++){
			if (y[sa[i]]!=y[sa[i-1]]||y[sa[i]+j]!=y[sa[i-1]+j]) p++;
			x[sa[i]]=p;
		}
	}
	memcpy(rank,x,sizeof(rank));
}

void geth(){
	for (int i=1,j=0;i<=n;i++){
		if (rank[i]==1) continue;
		while (s[i+j]==s[sa[rank[i]-1]+j]) j++;
		h[rank[i]]=j;
		if (j) j--;
	}
}

void getst(){
	for (int i=1;i<=n;i++) st[i][0]=h[i];
	for (int j=1;j<=19;j++)
		for (int i=1;i+(1<<j)-1<=n;i++)
			st[i][j]=min(st[i][j-1],st[i+(1<<(j-1))][j-1]);
}

int getmin(int x,int y){
	int l=rank[x],r=rank[y];
	if (l>r) swap(l,r);
	l++;int k=log2(r-l+1);//一定要记得++l
	return min(st[l][k],st[r-(1<<k)+1][k]);
}

int main(){
	scanf("%d",&T);
	while (T--){
		scanf("%d",&n);maxs=0;
		for (int i=1;i<=n;i++) scanf("%s",c),s[i]=c[0];
		s[n+1]=0,getsa(),geth(),getst();
		for (int i=1;i<=n;i++)
			for (int j=1;j+i<=n;j+=i){
				int tmp=getmin(j,j+i),k=j-(i-tmp%i);
				tmp/=i;
				if (k>=0&&getmin(k,k+i)>=i) tmp++;//大于等于i是因为如果长度足够(i-tmp%i),那么这两个串后面都会匹配了,所以这是没有影响的。
				maxs=max(maxs,tmp+1);
			}
		printf("%d\n",maxs);
	}
	return 0;
}


你可能感兴趣的:(后缀数组)