// stdafx.h : 标准系统包含文件的包含文件,
// 或是经常使用但不常更改的
// 特定于项目的包含文件
//
#pragma once
#include "targetver.h"
#include <stdio.h>
#include <tchar.h>
// TODO: 在此处引用程序需要的其他头文件
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
void ctmf(
unsigned char* src, unsigned char* dst,
int width, int height,
int src_step_row, int dst_step_row,
int r, int channels, unsigned long memsize
);
void Median3X3Filter(unsigned char *pSrc,unsigned char *pDst,int rect_w,int rect_h,int nWidth);
// stdafx.cpp : 只包括标准包含文件的源文件
// median3X3.pch 将作为预编译头
// stdafx.obj 将包含预编译类型信息
#include "stdafx.h"
void BubbleSort(int * bArray, int iFilterLen);
void QuickSortND(int SortData[],int len);
/* Type declarations */
#ifdef _MSC_VER
#include <basetsd.h>
typedef UINT8 uint8_t;
typedef UINT16 uint16_t;
typedef UINT32 uint32_t;
#pragma warning( disable: 4799 )
#else
#include <stdint.h>
#endif
#define __SSE2__
/* Intrinsic declarations */
#if defined(__SSE2__) || defined(__MMX__)
#if defined(__SSE2__)
#include <emmintrin.h>
#elif defined(__MMX__)
#include <mmintrin.h>
#endif
#if defined(__GNUC__)
#include <mm_malloc.h>
#elif defined(_MSC_VER)
#include <malloc.h>
#endif
#elif defined(__ALTIVEC__)
#include <altivec.h>
#endif
/* Compiler peculiarities */
#if defined(__GNUC__)
#include <stdint.h>
#define inline __inline__
#define align(x) __attribute__ ((aligned (x)))
#elif defined(_MSC_VER)
#define inline __inline
#define align(x) __declspec(align(x))
#else
#define inline
#define align(x)
#endif
#ifndef MIN
#define MIN(a,b) ((a) > (b) ? (b) : (a))
#endif
#ifndef MAX
#define MAX(a,b) ((a) < (b) ? (b) : (a))
#endif
/**
* This structure represents a two-tier histogram. The first tier (known as the
* "coarse" level) is 4 bit wide and the second tier (known as the "fine" level)
* is 8 bit wide. Pixels inserted in the fine level also get inserted into the
* coarse bucket designated by the 4 MSBs of the fine bucket value.
*
* The structure is aligned on 16 bytes, which is a prerequisite for SIMD
* instructions. Each bucket is 16 bit wide, which means that extra care must be
* taken to prevent overflow.
*/
typedef struct align(16)
{
uint16_t coarse[16];
uint16_t fine[16][16];
} Histogram;
/**
* HOP is short for Histogram OPeration. This macro makes an operation \a op on
* histogram \a h for pixel value \a x. It takes care of handling both levels.
*/
#define HOP(h,x,op) \
h.coarse[x>>4] op; \
*((uint16_t*) h.fine + x) op;
#define COP(c,j,x,op) \
h_coarse[ 16*(n*c+j) + (x>>4) ] op; \
h_fine[ 16 * (n*(16*c+(x>>4)) + j) + (x & 0xF) ] op;
/**
* Adds histograms \a x and \a y and stores the result in \a y. Makes use of
* SSE2, MMX or Altivec, if available.
*/
#if defined(__SSE2__)
static inline void histogram_add( const uint16_t x[16], uint16_t y[16] )
{
*(__m128i*) &y[0] = _mm_add_epi16( *(__m128i*) &y[0], *(__m128i*) &x[0] );
*(__m128i*) &y[8] = _mm_add_epi16( *(__m128i*) &y[8], *(__m128i*) &x[8] );
}
#elif defined(__MMX__)
static inline void histogram_add( const uint16_t x[16], uint16_t y[16] )
{
*(__m64*) &y[0] = _mm_add_pi16( *(__m64*) &y[0], *(__m64*) &x[0] );
*(__m64*) &y[4] = _mm_add_pi16( *(__m64*) &y[4], *(__m64*) &x[4] );
*(__m64*) &y[8] = _mm_add_pi16( *(__m64*) &y[8], *(__m64*) &x[8] );
*(__m64*) &y[12] = _mm_add_pi16( *(__m64*) &y[12], *(__m64*) &x[12] );
}
#elif defined(__ALTIVEC__)
static inline void histogram_add( const uint16_t x[16], uint16_t y[16] )
{
*(vector unsigned short*) &y[0] = vec_add( *(vector unsigned short*) &y[0], *(vector unsigned short*) &x[0] );
*(vector unsigned short*) &y[8] = vec_add( *(vector unsigned short*) &y[8], *(vector unsigned short*) &x[8] );
}
#else
static inline void histogram_add( const uint16_t x[16], uint16_t y[16] )
{
int i;
for ( i = 0; i < 16; ++i ) {
y[i] += x[i];
}
}
#endif
/**
* Subtracts histogram \a x from \a y and stores the result in \a y. Makes use
* of SSE2, MMX or Altivec, if available.
*/
#if defined(__SSE2__)
static inline void histogram_sub( const uint16_t x[16], uint16_t y[16] )
{
*(__m128i*) &y[0] = _mm_sub_epi16( *(__m128i*) &y[0], *(__m128i*) &x[0] );
*(__m128i*) &y[8] = _mm_sub_epi16( *(__m128i*) &y[8], *(__m128i*) &x[8] );
}
#elif defined(__MMX__)
static inline void histogram_sub( const uint16_t x[16], uint16_t y[16] )
{
*(__m64*) &y[0] = _mm_sub_pi16( *(__m64*) &y[0], *(__m64*) &x[0] );
*(__m64*) &y[4] = _mm_sub_pi16( *(__m64*) &y[4], *(__m64*) &x[4] );
*(__m64*) &y[8] = _mm_sub_pi16( *(__m64*) &y[8], *(__m64*) &x[8] );
*(__m64*) &y[12] = _mm_sub_pi16( *(__m64*) &y[12], *(__m64*) &x[12] );
}
#elif defined(__ALTIVEC__)
static inline void histogram_sub( const uint16_t x[16], uint16_t y[16] )
{
*(vector unsigned short*) &y[0] = vec_sub( *(vector unsigned short*) &y[0], *(vector unsigned short*) &x[0] );
*(vector unsigned short*) &y[8] = vec_sub( *(vector unsigned short*) &y[8], *(vector unsigned short*) &x[8] );
}
#else
static inline void histogram_sub( const uint16_t x[16], uint16_t y[16] )
{
int i;
for ( i = 0; i < 16; ++i ) {
y[i] -= x[i];
}
}
#endif
static inline void histogram_muladd( const uint16_t a, const uint16_t x[16], uint16_t y[16] )
{
int i;
for ( i = 0; i < 16; ++i ) {
y[i] += a * x[i];
}
}
static void ctmf_helper(unsigned char* src, unsigned char* dst,int width,int height,int src_step,int dst_step,int r,int cn,int pad_left, int pad_right)
{
const int m = height, n = width;
int i, j, k, c;
const unsigned char *p, *q;
Histogram H[4];
uint16_t *h_coarse, *h_fine, luc[4][16];
assert( src );
assert( dst );
assert( r >= 0 );
assert( width >= 2*r+1 );
assert( height >= 2*r+1 );
assert( src_step != 0 );
assert( dst_step != 0 );
/* SSE2 and MMX need aligned memory, provided by _mm_malloc(). */
#if defined(__SSE2__) || defined(__MMX__)
h_coarse = (uint16_t*) _mm_malloc( 1 * 16 * n * cn * sizeof(uint16_t), 16 );
h_fine = (uint16_t*) _mm_malloc( 16 * 16 * n * cn * sizeof(uint16_t), 16 );
memset( h_coarse, 0, 1 * 16 * n * cn * sizeof(uint16_t) );
memset( h_fine, 0, 16 * 16 * n * cn * sizeof(uint16_t) );
#else
h_coarse = (uint16_t*) calloc( 1 * 16 * n * cn, sizeof(uint16_t) );
h_fine = (uint16_t*) calloc( 16 * 16 * n * cn, sizeof(uint16_t) );
#endif
/* First row initialization */
/*
#define HOP(h,x,op) \
h.coarse[x>>4] op; \
*((uint16_t*) h.fine + x) op;
#define COP(c,j,x,op) \
h_coarse[ 16*(n*c+j) + (x>>4) ] op; \
h_fine[ 16 * (n*(16*c+(x>>4)) + j) + (x & 0xF) ] op;
*/
for ( j = 0; j < n; ++j )
{
for ( c = 0; c < cn; ++c )
{
//COP( c, j, src[cn*j+c], += r+1 );
h_coarse[ 16*(n*c+j) + (src[cn*j+c]>>4) ] += r+1;
h_fine[ 16 * (n*(16*c+(src[cn*j+c]>>4)) + j) + (src[cn*j+c] & 0xF) ] += r+1;
}
}
for ( i = 0; i < r; ++i )
{
for ( j = 0; j < n; ++j )
{
for ( c = 0; c < cn; ++c )
{
//COP( c, j, src[src_step*i+cn*j+c], ++ );
h_coarse[ 16*(n*c+j) + (src[src_step*i+cn*j+c]>>4) ]++;
h_fine[ 16 * (n*(16*c+(src[src_step*i+cn*j+c]>>4)) + j) + (src[src_step*i+cn*j+c] & 0xF) ]++;
}
}
}
for ( i = 0; i < m; ++i )
{
/* Update column histograms for entire row. */
p = src + src_step * MAX( 0, i-r-1 );
q = p + cn * n;
for ( j = 0; p != q; ++j )
{
for ( c = 0; c < cn; ++c, ++p )
{
COP( c, j, *p, -- );
}
}
p = src + src_step * MIN( m-1, i+r );
q = p + cn * n;
for ( j = 0; p != q; ++j )
{
for ( c = 0; c < cn; ++c, ++p )
{
COP( c, j, *p, ++ );
}
}
/* First column initialization */
memset( H, 0, cn*sizeof(H[0]) );
memset( luc, 0, cn*sizeof(luc[0]) );
if ( pad_left )
{
for ( c = 0; c < cn; ++c )
{
histogram_muladd( r, &h_coarse[16*n*c], H[c].coarse );
}
}
for ( j = 0; j < (pad_left ? r : 2*r); ++j )
{
for ( c = 0; c < cn; ++c )
{
histogram_add( &h_coarse[16*(n*c+j)], H[c].coarse );
}
}
for ( c = 0; c < cn; ++c )
{
for ( k = 0; k < 16; ++k )
{
histogram_muladd( 2*r+1, &h_fine[16*n*(16*c+k)], &H[c].fine[k][0] );
}
}
for ( j = pad_left ? 0 : r; j < (pad_right ? n : n-r); ++j )
{
for ( c = 0; c < cn; ++c )
{
const uint16_t t = 2*r*r + 2*r;
uint16_t sum = 0, *segment;
int b;
histogram_add( &h_coarse[16*(n*c + MIN(j+r,n-1))], H[c].coarse );
/* Find median at coarse level */
for ( k = 0; k < 16 ; ++k )
{
sum += H[c].coarse[k];
if ( sum > t )
{
sum -= H[c].coarse[k];
break;
}
}
assert( k < 16 );
/* Update corresponding histogram segment */
if ( luc[c][k] <= j-r )
{
memset( &H[c].fine[k], 0, 16 * sizeof(uint16_t) );
for ( luc[c][k] = j-r; luc[c][k] < MIN(j+r+1,n); ++luc[c][k] )
{
histogram_add( &h_fine[16*(n*(16*c+k)+luc[c][k])], H[c].fine[k] );
}
if ( luc[c][k] < j+r+1 )
{
histogram_muladd( j+r+1 - n, &h_fine[16*(n*(16*c+k)+(n-1))], &H[c].fine[k][0] );
luc[c][k] = j+r+1;
}
}
else
{
for ( ; luc[c][k] < j+r+1; ++luc[c][k] )
{
histogram_sub( &h_fine[16*(n*(16*c+k)+MAX(luc[c][k]-2*r-1,0))], H[c].fine[k] );
histogram_add( &h_fine[16*(n*(16*c+k)+MIN(luc[c][k],n-1))], H[c].fine[k] );
}
}
histogram_sub( &h_coarse[16*(n*c+MAX(j-r,0))], H[c].coarse );
/* Find median in segment */
segment = H[c].fine[k];
for ( b = 0; b < 16 ; ++b )
{
sum += segment[b];
if ( sum > t )
{
dst[dst_step*i+cn*j+c] = 16*k + b;
break;
}
}
assert( b < 16 );
}
}
}
#if defined(__SSE2__) || defined(__MMX__)
_mm_empty();
_mm_free(h_coarse);
_mm_free(h_fine);
#else
free(h_coarse);
free(h_fine);
#endif
}
/**
* \brief Constant-time median filtering
*
* This function does a median filtering of an 8-bit image. The source image is
* processed as if it was padded with zeros. The median kernel is square with
* odd dimensions. Images of arbitrary size may be processed.
*
* To process multi-channel images, you must call this function multiple times,
* changing the source and destination adresses and steps such that each channel
* is processed as an independent single-channel image.
*
* Processing images of arbitrary bit depth is not supported.
*
* The computing time is O(1) per pixel, independent of the radius of the
* filter. The algorithm's initialization is O(r*width), but it is negligible.
* Memory usage is simple: it will be as big as the cache size, or smaller if
* the image is small. For efficiency, the histograms' bins are 16-bit wide.
* This may become too small and lead to overflow as \a r increases.
*
* \param src Source image data.
* \param dst Destination image data. Must be preallocated.
* \param width Image width, in pixels.
* \param height Image height, in pixels.
* \param src_step Distance between adjacent pixels on the same column in
* the source image, in bytes.
* \param dst_step Distance between adjacent pixels on the same column in
* the destination image, in bytes.
* \param r Median filter radius. The kernel will be a 2*r+1 by
* 2*r+1 square.
* \param cn Number of channels. For example, a grayscale image would
* have cn=1 while an RGB image would have cn=3.
* \param memsize Maximum amount of memory to use, in bytes. Set this to
* the size of the L2 cache, then vary it slightly and
* measure the processing time to find the optimal value.
* For example, a 512 kB L2 cache would have
* memsize=512*1024 initially.
*/
void ctmf(unsigned char* src,unsigned char* dst,int width,int height,int src_step,int dst_step,int r,int cn,long unsigned int memsize)
{
/*
* Processing the image in vertical stripes is an optimization made
* necessary by the limited size of the CPU cache. Each histogram is 544
* bytes big and therefore I can fit a limited number of them in the cache.
* That number may sometimes be smaller than the image width, which would be
* the number of histograms I would need without stripes.
*
* I need to keep histograms in the cache so that they are available
* quickly when processing a new row. Each row needs access to the previous
* row's histograms. If there are too many histograms to fit in the cache,
* thrashing to RAM happens.
*
* To solve this problem, I figure out the maximum number of histograms
* that can fit in cache. From this is determined the number of stripes in
* an image. The formulas below make the stripes all the same size and use
* as few stripes as possible.
*
* Note that each stripe causes an overlap on the neighboring stripes, as
* when mowing the lawn. That overlap is proportional to r. When the overlap
* is a significant size in comparison with the stripe size, then we are not
* O(1) anymore, but O(r). In fact, we have been O(r) all along, but the
* initialization term was neglected, as it has been (and rightly so) in B.
* Weiss, "Fast Median and Bilateral Filtering", SIGGRAPH, 2006. Processing
* by stripes only makes that initialization term bigger.
*
* Also, note that the leftmost and rightmost stripes don't need overlap.
* A flag is passed to ctmf_helper() so that it treats these cases as if the
* image was zero-padded.
*/
int stripes = (int) ceil( (double) (width - 2*r) / (memsize / sizeof(Histogram) - 2*r) );
int stripe_size = (int) ceil( (double) ( width + stripes*2*r - 2*r ) / stripes );
int i;
for ( i = 0; i < width; i += stripe_size - 2*r ) {
int stripe = stripe_size;
/* Make sure that the filter kernel fits into one stripe. */
if ( i + stripe_size - 2*r >= width || width - (i + stripe_size - 2*r) < 2*r+1 ) {
stripe = width - i;
}
ctmf_helper( src + cn*i, dst + cn*i, stripe, height, src_step, dst_step, r, cn,
i == 0, stripe == width - i );
if ( stripe == width - i ) {
break;
}
}
}
void Median3X3Filter(unsigned char *pSrc,unsigned char *pDst,int rect_w,int rect_h,int nWidth)
{
unsigned char *lpSrc; // 指向源图像的指针
int aValue[200];
int bValue[200];
int i,j,k,l,x,y;
int radius = 5;
int len = (2*radius+1)*(2*radius+1);
memcpy(pDst,pSrc,sizeof(unsigned char)*rect_w);
memcpy(pDst+(rect_h-1)*rect_w,pSrc+(rect_h-1)*nWidth,sizeof(unsigned char)*rect_w);
for (i = 1; i < rect_h - 1;i++)
{
pDst[i*rect_w] = pSrc[i*nWidth];
pDst[i*rect_w + rect_w - 1] = pSrc[i*nWidth+rect_w-1];
}
for(i = radius; i < rect_h - radius; i++)
{
// 列(除去边缘几列)
for(j = radius; j < rect_w - radius; j++)
{
lpSrc = pSrc + i*nWidth + j;
k = 0;
for (y = -radius; y <= radius; y++)
{
for (x = -radius; x <= radius; x++)
{
aValue[k++] = lpSrc[y*nWidth+x];
}
}
// 获取中值
//BubbleSort(aValue, len);
QuickSortND(aValue,len);
pDst[i*rect_w+j] = aValue[len/2];
}
}
}
void BubbleSort(int * bArray, int iFilterLen)
{
int
i,j;
// 循环变量
unsigned char bTemp;
// 用冒泡法对数组进行排序
for (j = 0; j < iFilterLen - 1; j ++)
{
for (i = 0; i < iFilterLen - j - 1; i ++)
{
if (bArray[i] > bArray[i + 1])
{
// 互换
bTemp = bArray[i];
bArray[i] = bArray[i + 1];
bArray[i + 1] = bTemp;
}
}
}
}
void exchData(int *x0,int *x1)
{
int tmp = *x0;
*x0 = *x1;
*x1 = tmp;
}
//划分子函数
int partition(int SortData[],int low,int high)
{
int len=high-low+1;
if(len<2) return low ;
int i=low; //前段搜寻标
int j=high+1;
//号,注意这里i=
int key=SortData[low];
for(;;)
{
do
{
i++;
}while(i<=high&&SortData[i]<key);
do
{
j--;
}while(SortData[j]>key);
if(i>=j)
break;
exchData(SortData+i,SortData+j);
}
exchData(SortData+low,SortData+j);
return j;
}
void QuickSortND(int SortData[],int len)
{
int stk[64] = {0};
int p=0;
int l,h,m;
if(len<2)
return;
stk[p++]=0;
stk[p++]=len-1;
while(p!=0)
{
h=stk[--p];
l=stk[--p];
if (l<h)
{
m=partition(SortData,l,h);
if (m-1>l)
{
stk[p++]=l;
stk[p++]=m-1;
}
if (m+1<h)
{
stk[p++]=m+1;
stk[p++]=h;
}
}
}
}
// median3X3.cpp : 定义控制台应用程序的入口点。
//
#include "stdafx.h"
#define WW 1920
#define HH 1080
static unsigned char MeM0[WW*HH];
static unsigned char pDst0[1000*1000];
static unsigned char pDst1[1000*1000];
int _tmain(int argc, _TCHAR* argv[])
{
srand((unsigned)time(NULL));
int y,x;
for (y = 0; y < HH; y++)
{
for (x = 0; x < WW; x++)
{
MeM0[y*WW+x] = rand()%256;
}
}
int rect_w = 1000;
int rect_h = 1000;
/*
void ctmf(
const unsigned char* const src, unsigned char* const dst,
const int width, const int height,
const int src_step, const int dst_step,
const int r, const int cn, const long unsigned int memsize
);
*/
for (int i = 0; i < 1; i++)
{
int t0 = clock();
Median3X3Filter(MeM0,pDst0,rect_w,rect_h,WW);
t0 = clock()-t0;
printf("t0 = %d\n",t0);
int t1 = clock();
ctmf(MeM0,pDst1,rect_w,rect_h,WW,rect_w,5,1,160*1024);
t1 = clock()-t1;
printf("t1 = %d\n",t1);
}
#if 0
for (y = 0; y < rect_h; y++)
{
for (x = 0; x < rect_w; x++)
{
printf("%4d,",MeM0[y*WW+x]);
}
printf("\n");
}
printf("\n");printf("\n");printf("\n");printf("\n");
for (y = 0; y < rect_h; y++)
{
for (x = 0; x < rect_w; x++)
{
printf("%4d,",pDst0[y*rect_w+x]);
}
printf("\n");
}
printf("\n");printf("\n");printf("\n");printf("\n");
for (y = 0; y < rect_h; y++)
{
for (x = 0; x < rect_w; x++)
{
printf("%4d,",pDst1[y*rect_w+x]);
}
printf("\n");
}
printf("\n");printf("\n");printf("\n");printf("\n");
#endif
for (y = 5; y < rect_h-5; y++)
{
for (x = 5; x < rect_w-5; x++)
{
if (pDst1[y*rect_w+x] != pDst0[y*rect_w+x])
{
printf("error\n");
}
}
}
printf("\n");printf("\n");printf("\n");printf("\n");
return 0;
}