在一个compressSlice()中,在compressCU函数中实现对一个CU的编码,其中主要进行了CU的初始化,以及实际的编码操作。
Void TEncCu::compressCU( TComDataCU*& rpcCU ) { // initialize CU data m_ppcBestCU[0]->initCU( rpcCU->getPic(), rpcCU->getAddr() ); m_ppcTempCU[0]->initCU( rpcCU->getPic(), rpcCU->getAddr() ); #if RATE_CONTROL_LAMBDA_DOMAIN m_addSADDepth = 0; m_LCUPredictionSAD = 0; m_temporalSAD = 0; #endif // analysis of CU xCompressCU( m_ppcBestCU[0], m_ppcTempCU[0], 0 ); #if ADAPTIVE_QP_SELECTION if( m_pcEncCfg->getUseAdaptQpSelect() ) { if(rpcCU->getSlice()->getSliceType()!=I_SLICE) //IIII { xLcuCollectARLStats( rpcCU); } } #endif }其中完成实际编码一个CU操作的是xCompressCU方法。前面的综述中已经描述过,每一个CTU按照四叉树结构进行划分,CompressCU中调用的 xCompressCU则相当于四叉树的根节点。另外,在每一个xCompressCU方法中间,会对每一个CU进行分析判断是否进行下一级划分。
xCompressCU函数由于包含了Intra和InterFrame编码的代码,因此同样非常长,共有600余行。下面着重对帧内编码的部分做一下梳理。
实现帧内编码的部分代码如下:
Void TEncCu::xCompressCU( TComDataCU*& rpcBestCU, TComDataCU*& rpcTempCU, UInt uiDepth, PartSize eParentPartSize ) { //...... // do normal intra modes if ( !bEarlySkip ) { // speedup for inter frames if( rpcBestCU->getSlice()->getSliceType() == I_SLICE || rpcBestCU->getCbf( 0, TEXT_LUMA ) != 0 || rpcBestCU->getCbf( 0, TEXT_CHROMA_U ) != 0 || rpcBestCU->getCbf( 0, TEXT_CHROMA_V ) != 0 ) // avoid very complex intra if it is unlikely { xCheckRDCostIntra( rpcBestCU, rpcTempCU, SIZE_2Nx2N ); rpcTempCU->initEstData( uiDepth, iQP ); if( uiDepth == g_uiMaxCUDepth - g_uiAddCUDepth ) { if( rpcTempCU->getWidth(0) > ( 1 << rpcTempCU->getSlice()->getSPS()->getQuadtreeTULog2MinSize() ) ) { xCheckRDCostIntra( rpcBestCU, rpcTempCU, SIZE_NxN ); rpcTempCU->initEstData( uiDepth, iQP ); } } } } //...... }在这部分代码中xCheckRDCostIntra( rpcBestCU, rpcTempCU, SIZE_2Nx2N )查看了各种intra预测模式下的代价:
Void TEncCu::xCheckRDCostIntra( TComDataCU*& rpcBestCU, TComDataCU*& rpcTempCU, PartSize eSize ) { UInt uiDepth = rpcTempCU->getDepth( 0 ); rpcTempCU->setSkipFlagSubParts( false, 0, uiDepth ); rpcTempCU->setPartSizeSubParts( eSize, 0, uiDepth ); rpcTempCU->setPredModeSubParts( MODE_INTRA, 0, uiDepth ); rpcTempCU->setCUTransquantBypassSubParts( m_pcEncCfg->getCUTransquantBypassFlagValue(), 0, uiDepth ); Bool bSeparateLumaChroma = true; // choose estimation mode UInt uiPreCalcDistC = 0; if( !bSeparateLumaChroma ) { m_pcPredSearch->preestChromaPredMode( rpcTempCU, m_ppcOrigYuv[uiDepth], m_ppcPredYuvTemp[uiDepth] ); } m_pcPredSearch ->estIntraPredQT ( rpcTempCU, m_ppcOrigYuv[uiDepth], m_ppcPredYuvTemp[uiDepth], m_ppcResiYuvTemp[uiDepth], m_ppcRecoYuvTemp[uiDepth], uiPreCalcDistC, bSeparateLumaChroma ); m_ppcRecoYuvTemp[uiDepth]->copyToPicLuma(rpcTempCU->getPic()->getPicYuvRec(), rpcTempCU->getAddr(), rpcTempCU->getZorderIdxInCU() ); m_pcPredSearch ->estIntraPredChromaQT( rpcTempCU, m_ppcOrigYuv[uiDepth], m_ppcPredYuvTemp[uiDepth], m_ppcResiYuvTemp[uiDepth], m_ppcRecoYuvTemp[uiDepth], uiPreCalcDistC ); m_pcEntropyCoder->resetBits(); if ( rpcTempCU->getSlice()->getPPS()->getTransquantBypassEnableFlag()) { m_pcEntropyCoder->encodeCUTransquantBypassFlag( rpcTempCU, 0, true ); } m_pcEntropyCoder->encodeSkipFlag ( rpcTempCU, 0, true ); m_pcEntropyCoder->encodePredMode( rpcTempCU, 0, true ); m_pcEntropyCoder->encodePartSize( rpcTempCU, 0, uiDepth, true ); m_pcEntropyCoder->encodePredInfo( rpcTempCU, 0, true ); m_pcEntropyCoder->encodeIPCMInfo(rpcTempCU, 0, true ); // Encode Coefficients Bool bCodeDQP = getdQPFlag(); m_pcEntropyCoder->encodeCoeff( rpcTempCU, 0, uiDepth, rpcTempCU->getWidth (0), rpcTempCU->getHeight(0), bCodeDQP ); setdQPFlag( bCodeDQP ); if( m_bUseSBACRD ) m_pcRDGoOnSbacCoder->store(m_pppcRDSbacCoder[uiDepth][CI_TEMP_BEST]); rpcTempCU->getTotalBits() = m_pcEntropyCoder->getNumberOfWrittenBits(); if(m_pcEncCfg->getUseSBACRD()) { rpcTempCU->getTotalBins() = ((TEncBinCABAC *)((TEncSbac*)m_pcEntropyCoder->m_pcEntropyCoderIf)->getEncBinIf())->getBinsCoded(); } rpcTempCU->getTotalCost() = m_pcRdCost->calcRdCost( rpcTempCU->getTotalBits(), rpcTempCU->getTotalDistortion() ); xCheckDQP( rpcTempCU ); xCheckBestMode(rpcBestCU, rpcTempCU, uiDepth); }
在这个函数中,调用了estIntraPredQT和estIntraPredChromaQT方法,这两个函数的作用是类似的,区别只在于前者针对亮度分量后者针对色度分量。我们重点关注对亮度分量的操作,即estIntraPredQT函数。
下面是estIntraPredQT的一段代码:
Void TEncSearch::estIntraPredQT( TComDataCU* pcCU, TComYuv* pcOrgYuv, TComYuv* pcPredYuv, TComYuv* pcResiYuv, TComYuv* pcRecoYuv, UInt& ruiDistC, Bool bLumaOnly ) { //...... for( Int modeIdx = 0; modeIdx < numModesAvailable; modeIdx++ ) { UInt uiMode = modeIdx; predIntraLumaAng( pcCU->getPattern(), uiMode, piPred, uiStride, uiWidth, uiHeight, bAboveAvail, bLeftAvail ); // use hadamard transform here UInt uiSad = m_pcRdCost->calcHAD(g_bitDepthY, piOrg, uiStride, piPred, uiStride, uiWidth, uiHeight ); UInt iModeBits = xModeBitsIntra( pcCU, uiMode, uiPU, uiPartOffset, uiDepth, uiInitTrDepth ); Double cost = (Double)uiSad + (Double)iModeBits * m_pcRdCost->getSqrtLambda(); CandNum += xUpdateCandList( uiMode, cost, numModesForFullRD, uiRdModeList, CandCostList ); } //...... }
在predIntraLumaAng函数中,编码器完成计算出当前PU的预测值:
Void TComPrediction::predIntraLumaAng(TComPattern* pcTComPattern, UInt uiDirMode, Pel* piPred, UInt uiStride, Int iWidth, Int iHeight, Bool bAbove, Bool bLeft ) { Pel *pDst = piPred; Int *ptrSrc; assert( g_aucConvertToBit[ iWidth ] >= 0 ); // 4x 4 assert( g_aucConvertToBit[ iWidth ] <= 5 ); // 128x128 assert( iWidth == iHeight ); ptrSrc = pcTComPattern->getPredictorPtr( uiDirMode, g_aucConvertToBit[ iWidth ] + 2, m_piYuvExt ); // get starting pixel in block Int sw = 2 * iWidth + 1; // Create the prediction if ( uiDirMode == PLANAR_IDX ) { xPredIntraPlanar( ptrSrc+sw+1, sw, pDst, uiStride, iWidth, iHeight ); } else { if ( (iWidth > 16) || (iHeight > 16) ) { xPredIntraAng(g_bitDepthY, ptrSrc+sw+1, sw, pDst, uiStride, iWidth, iHeight, uiDirMode, bAbove, bLeft, false ); } else { xPredIntraAng(g_bitDepthY, ptrSrc+sw+1, sw, pDst, uiStride, iWidth, iHeight, uiDirMode, bAbove, bLeft, true ); if( (uiDirMode == DC_IDX ) && bAbove && bLeft ) { xDCPredFiltering( ptrSrc+sw+1, sw, pDst, uiStride, iWidth, iHeight); } } } }在这个函数中主要起作用的是xPredIntraPlanar和xPredIntraAng两个函数,另外在PU大小小于16×16,且模式为DC模式时还会调用xDCPredFiltering函数。在这里我们主要关心前面两个。
xPredIntraPlanar的作用是以平面模式构建当前PU的帧内预测块:
Void TComPrediction::xPredIntraPlanar( Int* pSrc, Int srcStride, Pel* rpDst, Int dstStride, UInt width, UInt height ) { assert(width == height); Int k, l, bottomLeft, topRight; Int horPred; Int leftColumn[MAX_CU_SIZE], topRow[MAX_CU_SIZE], bottomRow[MAX_CU_SIZE], rightColumn[MAX_CU_SIZE]; UInt blkSize = width; UInt offset2D = width; UInt shift1D = g_aucConvertToBit[ width ] + 2; UInt shift2D = shift1D + 1; // Get left and above reference column and row for(k=0;k<blkSize+1;k++) { topRow[k] = pSrc[k-srcStride]; leftColumn[k] = pSrc[k*srcStride-1]; } // Prepare intermediate variables used in interpolation bottomLeft = leftColumn[blkSize]; topRight = topRow[blkSize]; for (k=0;k<blkSize;k++) { bottomRow[k] = bottomLeft - topRow[k]; rightColumn[k] = topRight - leftColumn[k]; topRow[k] <<= shift1D; leftColumn[k] <<= shift1D; } // Generate prediction signal for (k=0;k<blkSize;k++) { horPred = leftColumn[k] + offset2D; for (l=0;l<blkSize;l++) { horPred += rightColumn[k]; topRow[l] += bottomRow[l]; rpDst[k*dstStride+l] = ( (horPred + topRow[l]) >> shift2D ); } } }而 xPredIntraAng函数则承担了其他模式的预测块构建,也即,不同的模式索引值代表N多中不同的预测角度,从这些角度上以参考数据构建预测块。
Void TComPrediction::xPredIntraAng(Int bitDepth, Int* pSrc, Int srcStride, Pel*& rpDst, Int dstStride, UInt width, UInt height, UInt dirMode, Bool blkAboveAvailable, Bool blkLeftAvailable, Bool bFilter ) { Int k,l; Int blkSize = width; Pel* pDst = rpDst; // Map the mode index to main prediction direction and angle assert( dirMode > 0 ); //no planar Bool modeDC = dirMode < 2; Bool modeHor = !modeDC && (dirMode < 18); Bool modeVer = !modeDC && !modeHor; Int intraPredAngle = modeVer ? (Int)dirMode - VER_IDX : modeHor ? -((Int)dirMode - HOR_IDX) : 0; Int absAng = abs(intraPredAngle); Int signAng = intraPredAngle < 0 ? -1 : 1; // Set bitshifts and scale the angle parameter to block size Int angTable[9] = {0, 2, 5, 9, 13, 17, 21, 26, 32}; Int invAngTable[9] = {0, 4096, 1638, 910, 630, 482, 390, 315, 256}; // (256 * 32) / Angle Int invAngle = invAngTable[absAng]; absAng = angTable[absAng]; intraPredAngle = signAng * absAng; // Do the DC prediction if (modeDC) { Pel dcval = predIntraGetPredValDC(pSrc, srcStride, width, height, blkAboveAvailable, blkLeftAvailable); for (k=0;k<blkSize;k++) { for (l=0;l<blkSize;l++) { pDst[k*dstStride+l] = dcval; } } } // Do angular predictions else { Pel* refMain; Pel* refSide; Pel refAbove[2*MAX_CU_SIZE+1]; Pel refLeft[2*MAX_CU_SIZE+1]; // Initialise the Main and Left reference array. if (intraPredAngle < 0) { for (k=0;k<blkSize+1;k++) { refAbove[k+blkSize-1] = pSrc[k-srcStride-1]; } for (k=0;k<blkSize+1;k++) { refLeft[k+blkSize-1] = pSrc[(k-1)*srcStride-1]; } refMain = (modeVer ? refAbove : refLeft) + (blkSize-1); refSide = (modeVer ? refLeft : refAbove) + (blkSize-1); // Extend the Main reference to the left. Int invAngleSum = 128; // rounding for (shift by 8) for (k=-1; k>blkSize*intraPredAngle>>5; k--) { invAngleSum += invAngle; refMain[k] = refSide[invAngleSum>>8]; } } else { for (k=0;k<2*blkSize+1;k++) { refAbove[k] = pSrc[k-srcStride-1]; } for (k=0;k<2*blkSize+1;k++) { refLeft[k] = pSrc[(k-1)*srcStride-1]; } refMain = modeVer ? refAbove : refLeft; refSide = modeVer ? refLeft : refAbove; } if (intraPredAngle == 0) { for (k=0;k<blkSize;k++) { for (l=0;l<blkSize;l++) { pDst[k*dstStride+l] = refMain[l+1]; } } if ( bFilter ) { for (k=0;k<blkSize;k++) { pDst[k*dstStride] = Clip3(0, (1<<bitDepth)-1, pDst[k*dstStride] + (( refSide[k+1] - refSide[0] ) >> 1) ); } } } else { Int deltaPos=0; Int deltaInt; Int deltaFract; Int refMainIndex; for (k=0;k<blkSize;k++) { deltaPos += intraPredAngle; deltaInt = deltaPos >> 5; deltaFract = deltaPos & (32 - 1); if (deltaFract) { // Do linear filtering for (l=0;l<blkSize;l++) { refMainIndex = l+deltaInt+1; pDst[k*dstStride+l] = (Pel) ( ((32-deltaFract)*refMain[refMainIndex]+deltaFract*refMain[refMainIndex+1]+16) >> 5 ); } } else { // Just copy the integer samples for (l=0;l<blkSize;l++) { pDst[k*dstStride+l] = refMain[l+deltaInt+1]; } } } } // Flip the block if this is the horizontal mode if (modeHor) { Pel tmp; for (k=0;k<blkSize-1;k++) { for (l=k+1;l<blkSize;l++) { tmp = pDst[k*dstStride+l]; pDst[k*dstStride+l] = pDst[l*dstStride+k]; pDst[l*dstStride+k] = tmp; } } } } }具体的预测块构建的原理,将在下篇文章中详述。