hdu1027

首先,关于什么是全排列不做解释。如果一个排列为A,下一个排列为A_NEXT,那么A_NEXT一定与A有尽可能长的公共前缀。
看具体例子,一个排列为124653,如何找到它的下一个排列,因为下一个排列一定与124653有尽可能长的前缀,所以,脑洞大开一下,从后面往前看这个序列,如果后面的若干个数字有下一个排列,问题就得到了解决。
第一步:找最后面1个数字的下一个全排列。
124653,显然最后1个数字3不具有下一个全排列。
第二步:找最后面2个数字的下一个全排列。
124653,显然最后2个数字53不具有下一个全排列。
第三步:找最后面3个数字的下一个全排列。
124653,显然最后3个数字653不具有下一个全排列。


------插曲:到这里相信大家已经看出来,如果一个序列是递减的,那么它不具有下一个排列。


第四步:找最后面4个数字的下一个全排列。
124653,我们发现显然最后4个数字4653具有下一个全排列。因为它不是递减的,例如6453,5643这些排列都在4653的后面。


我们总结上面的操作,并总结出重复上面操作的两种终止情况:
1:从后向前比较相邻的两个元素,直到前一个元素小于后一个元素,停止
2:如果已经没有了前一个元素,则说明这个排列是递减的,所以这个排列是没有下一个排列的。


124653这个排列终止情况是上面介绍的第一种,从后向前比较相邻的2个元素,遇到4<6的情况停止。
并且我们可以知道:
1:124653和它的下一个排列的公共前缀为12(因为4653存在下一个排列,所以前面的数字12保持不变)
2:4后面的元素是递减的(上面介绍的终止条件是前一个元素小于后一个元素,这里是4<6)


现在,我们开始考虑如何找到4653的下个排列,首先明确4后面的几个数字中至少有一个大于4.
4肯定要和653这3个数字中大于4的数字中(6,5)的某一个进行交换。这里就是4要和6,5中的某一个交换,很明显要和5交换,如果找到这样的元素呢,因为我们知道4后面的元素是递减的,所以在653中从后面往前查找,找到第一个大于4的数字,这就是需要和4进行交换的数字。这里我们找到了5,交换之后得到的临时序列为5643.,交换后得到的643也是一个递减序列。


所以得到的4653的下一个临时序列为5643,但是既然前面数字变大了(4653--->5643),后面的自然要变为升序才行,变换5643得到5346.
所以124653的下一个序列为125643.
设P是1~n的一个全排列:p=p1p2......pn=p1p2......pj-1pjpj+1......pk-1pkpk+1......pn
1)从排列的右端开始,找出第一个比右边数字小的数字的序号j(j从左端开始计算),即 j=max{i|pi<pi+1}
2)在pj的右边的数字中,找出所有比pj大的数中最小的数字pk,即 k=max{i|pi>pj}(右边的数从右至左是递增的,因此k是所有大于pj的数字中序号最大者)
3)对换pi,pk 
4)再将pj+1......pk-1pkpk+1pn倒转得到排列p'=p1p2.....pj-1pjpn.....pk+1pkpk-1.....pj+1,这就是排列p的下一个下一个排列。
</pre><pre name="code" class="cpp">#include <iostream>
#include <stdio.h>
#include <algorithm>
#define MAX 1000+5
using namespace std;
int num,n,m,A[MAX];
void init()
{
    for(int i=0;i<n;i++)A[i]=i+1;
}
int  f()
{
    for(int i=n-1;i>0;i--)
    {
        if(A[i-1]<A[i])return i-1;
    }
    return -1;
}
void print_permutation()
{
    while(--m)
    {
        int k=f();
        for(int i=n-1;i>k;i--)
        {
            if(A[i]>A[k])
            {
                int temp=A[k];
                A[k]=A[i];
                A[i]=temp;
                break;
            }
        }
        sort(A+k+1,A+n);
    }
}
int main()
{
    //freopen("t.txt","r",stdin);
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        init();
        print_permutation();
        for(int i=0;i<n-1;i++)printf("%d ",A[i]);
        printf("%d\n",A[n-1]);
    }

    return 0;
}

你可能感兴趣的:(hdu1027)