Sereja has two sequences a and b and number p. Sequence a consists of n integers a1, a2, ..., an. Similarly, sequence b consists of m integers b1, b2, ..., bm. As usual, Sereja studies the sequences he has. Today he wants to find the number of positions q (q + (m - 1)·p ≤ n; q ≥ 1), such that sequence b can be obtained from sequenceaq, aq + p, aq + 2p, ..., aq + (m - 1)p by rearranging elements.
Sereja needs to rush to the gym, so he asked to find all the described positions of q.
The first line contains three integers n, m and p (1 ≤ n, m ≤ 2·105, 1 ≤ p ≤ 2·105). The next line contains n integersa1, a2, ..., an (1 ≤ ai ≤ 109). The next line contains m integers b1, b2, ..., bm (1 ≤ bi ≤ 109).
In the first line print the number of valid qs. In the second line, print the valid values in the increasing order.
5 3 1 1 2 3 2 1 1 2 3
2 1 3
6 3 2 1 3 2 2 3 1 1 2 3
2 1 2
STL。。。注意删除出现0次的元素。。。。
#include<cstdio> #include<iostream> #include<cstring> #include<algorithm> #include<set> #include<map> using namespace std; const int maxn=2e5+45; int a[maxn]; int n,m,p; map<int,int> A,B; void ins(int x,int t) { B[x]+=t; if(!B[x])B.erase(x); } int ans[maxn]; int main() { cin>>n>>m>>p; if(1ll*(m-1)*p+1>n){puts("0");return 0;} for(int i=1;i<=n;i++) { scanf("%d",a+i); } for(int i=1,x;i<=m;i++)scanf("%d",&x),A[x]++; ///A is set of b(target) for(int i=1;i<=p;i++) ///枚举开始点 { B.clear(); for(int j=i,k;j<=n;j+=p) { ins(a[j],1); k=j-m*p; if(k>0)ins(a[k],-1); k=j-(m-1)*p; if(k>0&&B==A)///!B.size()) { ans[++ans[0]]=k; } } } sort(ans+1,ans+ans[0]+1); printf("%d\n",ans[0]); for(int i=1;i<=ans[0];i++) printf("%d ",ans[i]); }