1369 - Answering Queries (线段树的单点更新)

1369 - Answering Queries
PDF (English) Statistics Forum
Time Limit: 3 second(s) Memory Limit: 32 MB

The problem you need to solve here is pretty simple. You aregive a function f(A, n), where A is an array of integers and nis the number of elements in the array. f(A, n) is defined as follows:

long long f( int A[]int n ) { // n = size ofA

   long long sum = 0;

   for( int= 0; i < n; i++ )

       for( int= i + 1; j < n; j++ )

           sum += A[i] - A[j];

   return sum;

}

Given the array A and aninteger n, and some queries of the form:

1)     0 x v (0 ≤ x < n, 0 ≤ v ≤ 106),meaning that you have to change the value of A[x] to v.

2)     1, meaning that you have to find f asdescribed above.

Input

Input starts with an integer T (≤ 5),denoting the number of test cases.

Each case starts with a line containing two integers: nand q (1 ≤ n, q ≤ 105).The next line contains n space separated integers between 0 and 106denoting the array A as described above.

Each of the next q lines contains one query as describedabove.

Output

For each case, print the case number in a single line first.Then for each query-type "1" print one single line containingthe value of f(A, n).

Sample Input

Output for Sample Input

1

3 5

1 2 3

1

0 0 3

1

0 2 1

1

Case 1:

-4

0

4

Note

Dataset is huge, use faster I/O methods.


#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <algorithm>
#include <iostream>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include <time.h>
#include <set>
#include <map>
#include <queue>
#include <vector>
#include <string>
#include <stdlib.h>
#include <memory.h>

#define REP(i,a,b) for(int i=(a);i<(b);++i)
#define RREP(i,b,a) for(int i =(b);i >= (a); --i)
#define CLR(a,x) memset(a,x,sizeof(a))
#define ALL(o) o.begin(),o.end()
#define PB push_back

using namespace std;
typedef long long ll;

template<class T>
void read(T & x) {
    char ch = getchar();
    bool sign = false;
    x = 0;
    while (ch < '0' || ch > '9') {
        if (ch == '-') sign = true;
        ch = getchar();
    }
    while ('0' <= ch && ch <= '9') {
        x = 10 * x + ch - '0';
        ch = getchar();
    }
    if (sign) x = -x;
}

template<class T>
void print(T x) {
    if (x > 9) print(x / 10);
    putchar('0' + (x % 10));
}

template<class T>
void println(T x) {
    print(x);
    puts("");
}

template<class T>
inline T sqr(T a) {
    return a * a;
}

struct Fract {
    Fract(ll a = 0, ll b = 1)
        :fenzi(a), fenmu(b) {
        sim();
    }

    Fract(const Fract & b) {
        fenzi = b.fenzi;
        fenmu = b.fenmu;
    }

    Fract & operator = (const Fract & b) {
        fenzi = b.fenzi;
        fenmu = b.fenmu;
        return *this;
    }

    void sim() {
        ll g = __gcd(abs(fenzi), abs(fenmu));
        if (g > 1) {
            fenzi /= g;
            fenmu /= g;
        }
        if (fenmu < 0) {
            fenzi = -fenzi;
            fenmu = -fenmu;
        }
    }

    Fract & operator += (const Fract & b) {
        fenzi = fenzi * b.fenmu + b.fenzi * fenmu;
        fenmu *= b.fenmu;
        sim();
        return *this;
    }

    Fract & operator -= (const Fract & b) {
        fenzi = fenzi * b.fenmu - b.fenzi * fenmu;
        fenmu *= b.fenmu;
        sim();
        return *this;
    }

    Fract & operator *= (const Fract & b) {
        fenzi *= b.fenzi;
        fenmu *= b.fenmu;
        sim();
        return *this;
    }

    Fract & operator /= (const Fract & b) {
        fenzi *= b.fenmu;
        fenmu *= b.fenzi;
        sim();
        return *this;
    }

    Fract operator + (const Fract & b) const {
        Fract result = *this;
        result += b;
        return result;
    }

    Fract operator - (const Fract & b) const {
        Fract result = *this;
        result -= b;
        return result;
    }

    Fract operator * (const Fract & b) const {
        Fract result = *this;
        result *= b;
        return result;
    }

    Fract operator / (const Fract & b) const {
        Fract result = *this;
        result /= b;
        return result;
    }
    ll fenzi, fenmu;
};
//#===============================================
/**
 *
 *
 *
 */
const int N = (int)(1e5 + 10);

struct SGTree {
    int num[N << 2];
    ll sum[N << 2],ans[N << 2];
    void pushup(int u) {
        int ls = u << 1,rs = u << 1 | 1;
        sum[u] = sum[ls] + sum[rs];
        ans[u] = ans[ls] + ans[rs];
        num[u] = num[ls] + num[rs];
        ans[u] += sum[rs] * num[ls] - sum[ls] * num[rs];
    }
    void build(int u,int l,int r) {
        if(l == r) {
            scanf("%lld",&sum[u]);
            ans[u] = 0;
            num[u] = 1;
        } else {
            int mid = (l + r) >> 1;
            build(u << 1, l, mid);
            build(u << 1 | 1, mid + 1, r);
            pushup(u);
        }
    }
    void update(int u,int l,int r,int x,int val) {
        if(l == r) {
            sum[u] = val;
            ans[u] = 0;
            num[u] = 1;
        } else {
            int mid = (l + r) >> 1;
            if(x <= mid) update(u << 1, l, mid, x, val);
            else update(u << 1 | 1, mid + 1, r, x, val);
            pushup(u);
        }
    }
} sgTree;

int main() {
    //freopen("in.txt","r",stdin);
    int T,cnt = 0;
    cin>>T;
    while(T--) {
        int n,q,x;
        scanf("%d %d",&n,&q);
        sgTree.build(1, 1, n);
        printf("Case %d:\n",++cnt);
        while(q--) {
            scanf("%d",&x);
            if(x == 1) {
                printf("%lld\n",-sgTree.ans[1]);
            } else {
                int v;
                scanf("%d %d",&x,&v);
                x++;
                sgTree.update(1, 1, n, x, v);
            }
        }
    }
    return 0;
}


你可能感兴趣的:(数据结构,线段树)