PDF (English) | Statistics | Forum |
Time Limit: 3 second(s) | Memory Limit: 32 MB |
The problem you need to solve here is pretty simple. You aregive a function f(A, n), where A is an array of integers and nis the number of elements in the array. f(A, n) is defined as follows:
long long f( int A[], int n ) { // n = size ofA
long long sum = 0;
for( int i = 0; i < n; i++ )
for( int j = i + 1; j < n; j++ )
sum += A[i] - A[j];
return sum;
}
Given the array A and aninteger n, and some queries of the form:
1) 0 x v (0 ≤ x < n, 0 ≤ v ≤ 106),meaning that you have to change the value of A[x] to v.
2) 1, meaning that you have to find f asdescribed above.
Input starts with an integer T (≤ 5),denoting the number of test cases.
Each case starts with a line containing two integers: nand q (1 ≤ n, q ≤ 105).The next line contains n space separated integers between 0 and 106denoting the array A as described above.
Each of the next q lines contains one query as describedabove.
For each case, print the case number in a single line first.Then for each query-type "1" print one single line containingthe value of f(A, n).
Sample Input |
Output for Sample Input |
1 3 5 1 2 3 1 0 0 3 1 0 2 1 1 |
Case 1: -4 0 4 |
Dataset is huge, use faster I/O methods.
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <algorithm> #include <iostream> #include <string.h> #include <stdio.h> #include <math.h> #include <time.h> #include <set> #include <map> #include <queue> #include <vector> #include <string> #include <stdlib.h> #include <memory.h> #define REP(i,a,b) for(int i=(a);i<(b);++i) #define RREP(i,b,a) for(int i =(b);i >= (a); --i) #define CLR(a,x) memset(a,x,sizeof(a)) #define ALL(o) o.begin(),o.end() #define PB push_back using namespace std; typedef long long ll; template<class T> void read(T & x) { char ch = getchar(); bool sign = false; x = 0; while (ch < '0' || ch > '9') { if (ch == '-') sign = true; ch = getchar(); } while ('0' <= ch && ch <= '9') { x = 10 * x + ch - '0'; ch = getchar(); } if (sign) x = -x; } template<class T> void print(T x) { if (x > 9) print(x / 10); putchar('0' + (x % 10)); } template<class T> void println(T x) { print(x); puts(""); } template<class T> inline T sqr(T a) { return a * a; } struct Fract { Fract(ll a = 0, ll b = 1) :fenzi(a), fenmu(b) { sim(); } Fract(const Fract & b) { fenzi = b.fenzi; fenmu = b.fenmu; } Fract & operator = (const Fract & b) { fenzi = b.fenzi; fenmu = b.fenmu; return *this; } void sim() { ll g = __gcd(abs(fenzi), abs(fenmu)); if (g > 1) { fenzi /= g; fenmu /= g; } if (fenmu < 0) { fenzi = -fenzi; fenmu = -fenmu; } } Fract & operator += (const Fract & b) { fenzi = fenzi * b.fenmu + b.fenzi * fenmu; fenmu *= b.fenmu; sim(); return *this; } Fract & operator -= (const Fract & b) { fenzi = fenzi * b.fenmu - b.fenzi * fenmu; fenmu *= b.fenmu; sim(); return *this; } Fract & operator *= (const Fract & b) { fenzi *= b.fenzi; fenmu *= b.fenmu; sim(); return *this; } Fract & operator /= (const Fract & b) { fenzi *= b.fenmu; fenmu *= b.fenzi; sim(); return *this; } Fract operator + (const Fract & b) const { Fract result = *this; result += b; return result; } Fract operator - (const Fract & b) const { Fract result = *this; result -= b; return result; } Fract operator * (const Fract & b) const { Fract result = *this; result *= b; return result; } Fract operator / (const Fract & b) const { Fract result = *this; result /= b; return result; } ll fenzi, fenmu; }; //#=============================================== /** * * * */ const int N = (int)(1e5 + 10); struct SGTree { int num[N << 2]; ll sum[N << 2],ans[N << 2]; void pushup(int u) { int ls = u << 1,rs = u << 1 | 1; sum[u] = sum[ls] + sum[rs]; ans[u] = ans[ls] + ans[rs]; num[u] = num[ls] + num[rs]; ans[u] += sum[rs] * num[ls] - sum[ls] * num[rs]; } void build(int u,int l,int r) { if(l == r) { scanf("%lld",&sum[u]); ans[u] = 0; num[u] = 1; } else { int mid = (l + r) >> 1; build(u << 1, l, mid); build(u << 1 | 1, mid + 1, r); pushup(u); } } void update(int u,int l,int r,int x,int val) { if(l == r) { sum[u] = val; ans[u] = 0; num[u] = 1; } else { int mid = (l + r) >> 1; if(x <= mid) update(u << 1, l, mid, x, val); else update(u << 1 | 1, mid + 1, r, x, val); pushup(u); } } } sgTree; int main() { //freopen("in.txt","r",stdin); int T,cnt = 0; cin>>T; while(T--) { int n,q,x; scanf("%d %d",&n,&q); sgTree.build(1, 1, n); printf("Case %d:\n",++cnt); while(q--) { scanf("%d",&x); if(x == 1) { printf("%lld\n",-sgTree.ans[1]); } else { int v; scanf("%d %d",&x,&v); x++; sgTree.update(1, 1, n, x, v); } } } return 0; }