- 算法方法快速回顾
托塔1
Unity知识快速回顾算法
(待修改)目录1.双指针2.滑动窗口理论基础3.二分查找3.二分查找理论基础4.KMP5.回溯算法6.贪心算法7.动态规划7.1.01背包7.2.完全背包7.3.多重背包8.单调栈9.并查集10.图论10.1.广度优先搜索(BFS)10.2.深度优先搜索(DFS)10.3.Dijkstra算法10.4.Floyd-Warshall算法11.哈希算法12.排序算法12.1.冒泡排序12.2.选择排序
- 算法之01背包问题和完全背包问题
旧巷小新
编程算法
文章目录1.相关解释2.01背包问题2.1空间未优化前2.2空间优化后2.301背包求方案数2.3.1空间未优化2.3.2空间已优化2.401背包问题求路径2.4.1构造出来的路径字典序最大2.4.2构造出来的路径字典序最小3.完全背包问题3.1完全背包问题未优化空间3.1未优化时间复杂度3.1.2优化时间复杂度3.2完全背包问题优化空间3.3恰好装满的方案数4.01背包问题相关应用5.完全背包问
- 蓝桥杯C++基础算法-完全背包(优化为一维)
sin2580
C++蓝桥杯c++算法
这段代码实现了一个完全背包问题的动态规划解法,并且使用了滚动数组来优化空间复杂度。以下是代码的详细思路解析:1.问题背景给定n个物品,每个物品有其体积v[i]和价值w[i],以及一个容量为m的背包。目标是选择物品使得总价值最大,同时总容量不超过背包的容量。与0-1背包问题不同的是,完全背包问题中每个物品可以无限次选择。2.动态规划的概念动态规划是一种常用的算法技巧,用于解决具有重叠子问题和最优子结
- 蓝桥杯C++基础算法-多重背包
sin2580
C++蓝桥杯c++算法
这段代码实现了一个多重背包问题的动态规划解法。多重背包问题与完全背包问题类似,但每个物品有其数量限制。以下是代码的详细思路解析:1.问题背景给定n个物品,每个物品有其体积v[i]、价值w[i]和数量s[i],以及一个容量为m的背包。目标是选择物品使得总价值最大,同时总容量不超过背包的容量。与完全背包问题不同的是,多重背包问题中每个物品的数量是有限的。2.动态规划的概念动态规划是一种常用的算法技巧,
- 蓝桥杯C++基础算法-多重背包(优化)
sin2580
C++蓝桥杯c++算法
这段代码实现了一个多重背包问题的动态规划解法,并且使用了二进制拆分(或称二进制优化)来优化物品的数量处理。这种方法可以显著减少状态转移的次数,提高算法的效率。以下是代码的详细思路解析:1.问题背景给定n个物品,每个物品有其体积a、价值b和数量s,以及一个容量为m的背包。目标是选择物品使得总价值最大,同时总容量不超过背包的容量。与完全背包问题不同的是,多重背包问题中每个物品的数量是有限的。2.二进制
- 动态规划算法求解背包问题的全面剖析
15号外媒
算法
摘要本文深入剖析动态规划算法在求解背包问题中的应用,详细阐述动态规划算法的基本原理、核心要素与解题步骤。通过对0-1背包问题和完全背包问题的具体分析,展示动态规划算法在解决背包问题上的高效性与独特优势。同时,结合实际案例进行算法实现与结果分析,并探讨算法的优化策略与拓展应用,旨在帮助读者全面掌握动态规划算法求解背包问题的方法与技巧。一、引言背包问题作为组合优化领域的经典问题,在资源分配、投资决策、
- 基础算法--背包问题
不会搬砖的淡水鱼
基础算法算法java动态规划贪心算法
背包问题概念完全背包(无限背包)0-1背包概念背包问题是一个经典的组合优化问题,其目标是在给定的一组物品中选择一些物品放入背包中,使得物品的总价值最大化,同时要求背包的总重量不超过背包的容量限制。背包问题有两种常见的变体:完全背包和0-1背包。鉴于完全背包计算过程相对0-1背包简单,这里先讲完全背包。完全背包(无限背包)在完全背包问题中,每个物品可以选择放入背包中的次数是无限的,即可以重复选择。每
- 代码随想录 Day 42 | 【第九章 动态规划 part 05】完全背包、518. 零钱兑换 II、377. 组合总和 Ⅳ、70. 爬楼梯 (进阶)
Accept17
动态规划算法
一、完全背包完全背包视频讲解:带你学透完全背包问题!和01背包有什么差别?遍历顺序上有什么讲究?_哔哩哔哩_bilibilihttps://programmercarl.com/%E8%83%8C%E5%8C%85%E9%97%AE%E9%A2%98%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%80%E5%AE%8C%E5%85%A8%E8%83%8C%E5%8C%85.ht
- 蓝桥杯常见算法模板(Python组)
-777.
蓝桥杯算法
目录1.二分1.整数二分(二分答案):2.浮点数二分(考不到)2.前缀和、差分1.前缀和一维:二维:2.差分一维:二维:3.贪心4.线性DP1.最长上升子序列(子序列问题一般下标从一开始)2.最长公共子序列3.常见背包模型1.0-1背包2.完全背包3.多重背包4.混合背包5.二维费用背包6.分组背包5.搜索1.DFS模板:1.子集问题2.全排列问题2.BFS6.数据结构1.并查集2.树状数组3.树
- Leetcode 刷题笔记1 动态规划part05
平乐君
leetcode笔记动态规划
开始完全背包不同于01背包,完全背包的特色在于元素可以重复拿取,因此在递归公式和遍历顺序上都有些许不同。leetcode518零钱兑换||在组合方式中所用到的递推公式是dp[j]=dp[j-coins[i]]+dp[j]对于coins[i]>j的情况,forjinrange(coin[i],amount+1)不会执行,即实现dp[i][j]=dp[i-1][j]classSolution:defc
- 力扣-动态规划-518 零钱兑换Ⅱ
夏末秋也凉
力扣#动态规划算法
思路dp数组定义:完全背包,不限物品使用次数,使用0-i的硬币,总和小于等于j的组合方式有dp[i][j]个递推公式:if(j>=coins[i])dp[i][j]=dp[i-1][j]+dp[i][j-coins[i]];elsedp[i][j]=dp[i-1][j];dp数组初始化:第一行以及第一列初始化为1遍历顺序:左右,上下时间复杂度:代码classSolution{public:intc
- day37 第九章 动态规划 part05
mvufi
动态规划算法
tips:1.两层for可以理解为是按顺序的。外层物品内层背包,不同物品放进背包只有一种顺序,如a,b,放时要么a在前,要么b在前,只有一种之前定好的物品的顺序;外层背包内层物品,a,b可以有a+b和b+a两种,均计入。引申:排列,ab,ba算两种排列方式组合,ab,ba算一种排列方式,如果只有ab,那也是组合数2.写算法不需要证明,找例子就行完全背包n,bagweight=map(int,inp
- leetcode刷题-动态规划06
emmmmXxxy
leetcode动态规划算法
代码随想录动态规划part06|322.零钱兑换、279.完全平方数、139.单词拆分322.零钱兑换279.完全平方数139.单词拆分关于多重背包,你该了解这些!背包问题总结篇!322.零钱兑换leetcode题目链接代码随想录文档讲解思路:完全背包整理:完全背包理论基础:装满这个背包可得的最大价值(遍历顺序可以颠倒)零钱兑换2:装满背包有多少种方法(每种方法不强调顺序,组合数)(先遍历物品再遍
- 贪心算法.
pianmian1
贪心算法算法
贪心算法是指只从当前角度出发,做出当前情景下最好的选择,在某种意义上来说是局部最优解,并不从全局的角度做决策.如果贪心策略选择不恰当,可能无法得到全局最优解.贪心算法的基本流程如下:1.分析问题,确定优化目标,对变量进行初始化2.制定贪心策略:在制定贪心策略时需要证明所选贪心策略一定可以得到全局最优解,若找到反例则推翻当前贪心策略,重新确定贪心策略.完全背包问题本节以完全背包问题为例,说明贪心算法
- 动态规划之背包问题--python版本
我是小码搬运工
#python基础动态规划背包问题python版本
动态规划之背包问题–python版本问题已知一个最大量的背包,给定一组给定固定价值和固定体积的物品,求在不超过最大值的前提下,能放入背包中的最大总价值。解题思路该问题是典型的动态规划问题,分为三种不同的类型(0-1背包问题、完全背包和多重背包问题)解题关键–状态转移表达式:B(k,C)=max(B(k−1,C),B(k−1,C−ci)+vi)B(k,C)=max(B(k-1,C),B(k-1,C-
- 动态规划之背包问题
于冬恋
动态规划算法
动态规划是一个重要的算法范式,它将一个问题分解为一系列更小的子问题,并通过存储子问题的解来避免重复计算,从而大幅提升时间效率。目录01背包问题完全背包问题多重背包问题二维费用背包问题(1)01背包问题给定n个物体,和一个容量为c的背包,物品i的重量为wi,其价值为应该如何选择装入背包的物品使其获得的总价值最大。可以用贪心算法,但是不一定能达到最优解,所以用动态规划解决创建一个数组dp[i][j]i
- 刷题计划day29 动规01背包(一)【01背包】【分割等和子集】【最后一块石头的重量 II】
哈哈哈的懒羊羊
算法java数据结构leetcode动态规划背包问题蓝桥杯
⚡刷题计划day29动规01背包(一)开始,可以点个免费的赞哦~往期可看专栏,关注不迷路,您的支持是我的最大动力~目录背包问题前言01背包二维数组dp[i][j]关于是否放物品:关于二维dp遍历顺序:一维数组dp(滚动数组)关于一维dp遍历顺序:题目一:416.分割等和子集题目二:1049.最后一块石头的重量II背包问题前言对于面试的话,其实掌握01背包和完全背包,就够用了,最多可以再来一个多重背
- 背包总结——0-1背包及完全背包问题总结及代码模板
Baymax的学习日志
c++动态规划算法c++
背包总结背包问题通常是多种物品有多个属性,且已知条件为某属性被受限,求另一属性的最大/最小/等于/存在不存在。以0-1背包为例解释:n个物品具有的属性为重量和价值,其中总重量C将重量的属性限制住,求最大价值,即求另一属性的特征。针对背包问题:1、先判断属于0-1背包还是完全背包。2、看是求最大值/最小值/等值/是否存在/排列/组合(排列/组合问题通常出现在完全背包中)。确定了背包类型及要求的问题后
- 动态规划——完全背包问题(力扣322: 零钱兑换)
索利亚噶通
动态规划算法
前言这次我们要说的是完全背包问题,还记得下面这张图吗,可以看到01背包问题和完全背包问题的区别在于每种物品的数量01背包问题中每种物品只有一个,只有选与不选两种情况完全背包问题种每种物品有多个,选不选,选多少都是考虑的问题定义:一个背包容积为C,一共N种物品,分别编号0,1,2....i,i+1,.....N-1,第i个物品的重量为weight[i],价值为value[i],每种物品可以选用任意多
- 算法分析与设计(一)——0-1背包问题
冠long馨
数据结构与算法算法动态规划数据结构背包问题
文章目录1三种背包问题详解2最值问题1.10-1背包问题1.2零钱兑换1.3一和零1.4最后一块石头的重量3.恰好背包容量问题4.排列组合问题4.1目标和4.2组合总和Ⅳ在简单复习完数据结构以后,便开始了算法复习。本博客将结合复习视频与LeetCode题目,面向机考算法复习。背包动态规划问题一般分为三种题型:最值问题:给定可选物品和限定容量,求最大价值或者最大体积。①0-1背包问题②完全背包问题。
- [LeetCode-Python版]动态规划——0-1背包和完全背包问题总结
古希腊掌管学习的神
LeetCode-Pythonleetcodepython动态规划
0-1背包有n个物品,第i个物品的体积为wiw_iwi,价值为viv_ivi,每个物品至多选一个,求体积和不超过capacity时的最大价值和状态转移:dfs(i,c)=max(dfs(i−1,c),dfs(i−1,c−w[i])+v[i]dfs(i,c)=max(dfs(i-1,c),dfs(i-1,c-w[i])+v[i]dfs(i,c)=max(dfs(i−1,c),dfs(i−1,c−w[
- 动态规划之背包问题(01背包,完全背包,多重背包,分组背包)
Fansv587
动态规划算法经验分享python
0、1背包问题概述0-1背包问题是一个经典的组合优化问题,属于动态规划算法的典型应用场景。该问题描述如下:有一个容量为C的背包,以及n个物品,每个物品有对应的重量wiw_iwi和价值vi(i=1,2...n)v_i(i=1,2...n)vi(i=1,2...n)。对于每个物品,我们只有两种选择:要么将其放入背包,要么不放入,即“0-1”选择(选是1,不选是0)。目标是在不超过背包容量的前提下,选择
- [动态规划] leetcode 416. 分割等和子集
Mr.Qin_
Java学习Java0-1背包问题动态规划
问题描述: 分割等和子集:给你一个只包含正整数的非空数组nums。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。 例子:输入nums={1,5,11,5};输出true。动态规划求解 这是一个0-1背包问题的变种,也就是每种物品只能选择一次。与之对应的是完全背包问题,选择每种物品的数量是不限制的,可以与另一篇博文对照来看。将非空数组nums,分为两部分,使得两部分的和相
- 动态规划——背包问题
kaili_ya
动态规划算法
动态规划——背包问题背包问题0-1背包问题描述解题思路优化完全背包解题思路优化多重背包解题思路1解题思路2恰好装满问题描述解题思路优化背包问题0-1背包一共有n件物品,第i(i从1开始)件物品的重量为w[i],价值为v[i]。在总重量不超过背包承载上限W的情况下,能够装入背包的最大价值是多少?问题描述假如你要去野营,你有一个容量为6磅的背吧,需要觉得该携带下面的哪些东西。其中每样东西都有相应的价值
- 【算法】动态规划专题⑩ —— 混合背包问题 python
查理零世
动态规划专题算法动态规划python
目录前置知识进入正题总结前置知识【算法】动态规划专题⑤——0-1背包问题+滚动数组优化【算法】动态规划专题⑥——完全背包问题python【算法】动态规划专题⑦——多重背包问题+二进制分解优化python混合背包结合了三种不同类型的背包问题:0/1背包、完全背包和多重背包进入正题混合背包问题https://www.acwing.com/problem/content/description/7/题目
- c++背包九讲之二维费用背包问题
永不为辅
一、背包九讲总述关于动态规划问题,最典型的就是背包九讲,先理解背包九讲后再总结关于动态规划的问题1、01背包问题2、完全背包问题3、多重背包问题4、混合背包问题5、二维费用的背包问题6、分组背包问题7、背包问题求方案数8、求背包问题的方案9、有依赖的背包问题往前四篇博文已经介绍了前四个问题,有需要的同学可以看一下!!二、二维费用背包问题二维费用的背包问题是指:对于每件物品,具有两种不同的费用,选择
- 动态规划-二维费用的背包问题
炙热的大叔
动态规划动态规划算法
文章目录1.一和零(474)2.盈利计划(879)1.一和零(474)题目描述:状态表示:我们之前的01背包问题以及完全背包问题都是一维的,因为我们只有一个要求或者说是限制那就是背包的容量,但是这里不同这题有两个限制,其实和一个限制是类似的,只不过给数组多加上一维而已。因此我们建立三维数组dp[i][j][k]表示我们在前i个二进制字符串中选择,要求选中的字符串中的0以及1字符的总数分别不能超过i
- 【二维费用的完全背包问题】
羊毛多一点
算法学习动态规划
前言简单写一下算法设计与分析这门课的一次实验原题要求是用0-1背包来做,但是老师要求用完全背包来做!一、完全背包与0-1背包有什么区别?0-1背包,顾名思义对于每件物品只能拿1次或者0次;而完全背包对于每件物品的拿取没有次数限制。二、二维费用背包二维费用背包是对于每件物品的拿取要付出两项代价,如:重量和体积。三、0-1背包理解0-1背包对我们理解其他背包问题十分重要,首先说一下0-1背包。问题描述
- 代码随想录算法训练营Day38||完全背包问题、leetcode 518. 零钱兑换 II 、 377. 组合总和 Ⅳ 、70. 爬楼梯 (进阶)
jiegongzhu3z
算法leetcode职场和发展
一、完全背包问题相较于01背包,完全背包的显著特征是每个物品可以用无数次,遍历顺序也不需要为了保证每个物品只去一次而倒序遍历。#include#includeusingnamespacestd;intmain(){intN,V;cin>>N>>V;vectorweight(N+1,0);vectorvalue(N+1,0);for(inti=0;i>weight[i]>>value[i];}vec
- 01背包与完全背包:正序Or倒叙遍历背包数究竟什么区别
社恐不参团
算法动态规划
01背包与完全背包:正序Or倒叙遍历背包数究竟什么区别第一次写,真的菜鸡的感性理解,如有理解错误之处,希望评论区多多指导刚开始学背包问题,虽然背代码很容易,但是着实蒙蔽此篇小文希望给新手一些帮助,放代码!//01背包问题for(inti=1;i>v>>w;//边输入边处理for(intj=m;j>=v;j--)//倒叙遍历背包数f[j]=max(f[j],f[j-v]
- linux系统服务器下jsp传参数乱码
3213213333332132
javajsplinuxwindowsxml
在一次解决乱码问题中, 发现jsp在windows下用js原生的方法进行编码没有问题,但是到了linux下就有问题, escape,encodeURI,encodeURIComponent等都解决不了问题
但是我想了下既然原生的方法不行,我用el标签的方式对中文参数进行加密解密总该可以吧。于是用了java的java.net.URLDecoder,结果还是乱码,最后在绝望之际,用了下面的方法解决了
- Spring 注解区别以及应用
BlueSkator
spring
1. @Autowired
@Autowired是根据类型进行自动装配的。如果当Spring上下文中存在不止一个UserDao类型的bean,或者不存在UserDao类型的bean,会抛出 BeanCreationException异常,这时可以通过在该属性上再加一个@Qualifier注解来声明唯一的id解决问题。
2. @Qualifier
当spring中存在至少一个匹
- printf和sprintf的应用
dcj3sjt126com
PHPsprintfprintf
<?php
printf('b: %b <br>c: %c <br>d: %d <bf>f: %f', 80,80, 80, 80);
echo '<br />';
printf('%0.2f <br>%+d <br>%0.2f <br>', 8, 8, 1235.456);
printf('th
- config.getInitParameter
171815164
parameter
web.xml
<servlet>
<servlet-name>servlet1</servlet-name>
<jsp-file>/index.jsp</jsp-file>
<init-param>
<param-name>str</param-name>
- Ant标签详解--基础操作
g21121
ant
Ant的一些核心概念:
build.xml:构建文件是以XML 文件来描述的,默认构建文件名为build.xml。 project:每个构建文
- [简单]代码片段_数据合并
53873039oycg
代码
合并规则:删除家长phone为空的记录,若一个家长对应多个孩子,保留一条家长记录,家长id修改为phone,对应关系也要修改。
代码如下:
- java 通信技术
云端月影
Java 远程通信技术
在分布式服务框架中,一个最基础的问题就是远程服务是怎么通讯的,在Java领域中有很多可实现远程通讯的技术,例如:RMI、MINA、ESB、Burlap、Hessian、SOAP、EJB和JMS等,这些名词之间到底是些什么关系呢,它们背后到底是基于什么原理实现的呢,了解这些是实现分布式服务框架的基础知识,而如果在性能上有高的要求的话,那深入了解这些技术背后的机制就是必须的了,在这篇blog中我们将来
- string与StringBuilder 性能差距到底有多大
aijuans
之前也看过一些对string与StringBuilder的性能分析,总感觉这个应该对整体性能不会产生多大的影响,所以就一直没有关注这块!
由于学程序初期最先接触的string拼接,所以就一直没改变过自己的习惯!
- 今天碰到 java.util.ConcurrentModificationException 异常
antonyup_2006
java多线程工作IBM
今天改bug,其中有个实现是要对map进行循环,然后有删除操作,代码如下:
Iterator<ListItem> iter = ItemMap.keySet.iterator();
while(iter.hasNext()){
ListItem it = iter.next();
//...一些逻辑操作
ItemMap.remove(it);
}
结果运行报Con
- PL/SQL的类型和JDBC操作数据库
百合不是茶
PL/SQL表标量类型游标PL/SQL记录
PL/SQL的标量类型:
字符,数字,时间,布尔,%type五中类型的
--标量:数据库中预定义类型的变量
--定义一个变长字符串
v_ename varchar2(10);
--定义一个小数,范围 -9999.99~9999.99
v_sal number(6,2);
--定义一个小数并给一个初始值为5.4 :=是pl/sql的赋值号
- Mockito:一个强大的用于 Java 开发的模拟测试框架实例
bijian1013
mockito单元测试
Mockito框架:
Mockito是一个基于MIT协议的开源java测试框架。 Mockito区别于其他模拟框架的地方主要是允许开发者在没有建立“预期”时验证被测系统的行为。对于mock对象的一个评价是测试系统的测
- 精通Oracle10编程SQL(10)处理例外
bijian1013
oracle数据库plsql
/*
*处理例外
*/
--例外简介
--处理例外-传递例外
declare
v_ename emp.ename%TYPE;
begin
SELECT ename INTO v_ename FROM emp
where empno=&no;
dbms_output.put_line('雇员名:'||v_ename);
exceptio
- 【Java】Java执行远程机器上Linux命令
bit1129
linux命令
Java使用ethz通过ssh2执行远程机器Linux上命令,
封装定义Linux机器的环境信息
package com.tom;
import java.io.File;
public class Env {
private String hostaddr; //Linux机器的IP地址
private Integer po
- java通信之Socket通信基础
白糖_
javasocket网络协议
正处于网络环境下的两个程序,它们之间通过一个交互的连接来实现数据通信。每一个连接的通信端叫做一个Socket。一个完整的Socket通信程序应该包含以下几个步骤:
①创建Socket;
②打开连接到Socket的输入输出流;
④按照一定的协议对Socket进行读写操作;
④关闭Socket。
Socket通信分两部分:服务器端和客户端。服务器端必须优先启动,然后等待soc
- angular.bind
boyitech
AngularJSangular.bindAngularJS APIbind
angular.bind 描述: 上下文,函数以及参数动态绑定,返回值为绑定之后的函数. 其中args是可选的动态参数,self在fn中使用this调用。 使用方法: angular.bind(se
- java-13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class KickOutBadGuys {
/**
* 题目:13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
* Maybe you can find out
- Redis.conf配置文件及相关项说明(自查备用)
Kai_Ge
redis
Redis.conf配置文件及相关项说明
# Redis configuration file example
# Note on units: when memory size is needed, it is possible to specifiy
# it in the usual form of 1k 5GB 4M and so forth:
#
- [强人工智能]实现大规模拓扑分析是实现强人工智能的前奏
comsci
人工智能
真不好意思,各位朋友...博客再次更新...
节点数量太少,网络的分析和处理能力肯定不足,在面对机器人控制的需求方面,显得力不从心....
但是,节点数太多,对拓扑数据处理的要求又很高,设计目标也很高,实现起来难度颇大...
- 记录一些常用的函数
dai_lm
java
public static String convertInputStreamToString(InputStream is) {
StringBuilder result = new StringBuilder();
if (is != null)
try {
InputStreamReader inputReader = new InputStreamRead
- Hadoop中小规模集群的并行计算缺陷
datamachine
mapreducehadoop并行计算
注:写这篇文章的初衷是因为Hadoop炒得有点太热,很多用户现有数据规模并不适用于Hadoop,但迫于扩容压力和去IOE(Hadoop的廉价扩展的确非常有吸引力)而尝试。尝试永远是件正确的事儿,但有时候不用太突进,可以调优或调需求,发挥现有系统的最大效用为上策。
-----------------------------------------------------------------
- 小学4年级英语单词背诵第二课
dcj3sjt126com
englishword
egg 蛋
twenty 二十
any 任何
well 健康的,好
twelve 十二
farm 农场
every 每一个
back 向后,回
fast 快速的
whose 谁的
much 许多
flower 花
watch 手表
very 非常,很
sport 运动
Chinese 中国的
- 自己实践了github的webhooks, linux上面的权限需要注意
dcj3sjt126com
githubwebhook
环境, 阿里云服务器
1. 本地创建项目, push到github服务器上面
2. 生成www用户的密钥
sudo -u www ssh-keygen -t rsa -C "xxx@xx.com"
3. 将密钥添加到github帐号的SSH_KEYS里面
3. 用www用户执行克隆, 源使
- Java冒泡排序
蕃薯耀
冒泡排序Java冒泡排序Java排序
冒泡排序
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 10:40:14 星期二
http://fanshuyao.iteye.com/
- Excle读取数据转换为实体List【基于apache-poi】
hanqunfeng
apache
1.依赖apache-poi
2.支持xls和xlsx
3.支持按属性名称绑定数据值
4.支持从指定行、列开始读取
5.支持同时读取多个sheet
6.具体使用方式参见org.cpframework.utils.excelreader.CP_ExcelReaderUtilTest.java
比如:
Str
- 3个处于草稿阶段的Javascript API介绍
jackyrong
JavaScript
原文:
http://www.sitepoint.com/3-new-javascript-apis-may-want-follow/?utm_source=html5weekly&utm_medium=email
本文中,介绍3个仍然处于草稿阶段,但应该值得关注的Javascript API.
1) Web Alarm API
&
- 6个创建Web应用程序的高效PHP框架
lampcy
Web框架PHP
以下是创建Web应用程序的PHP框架,有coder bay网站整理推荐:
1. CakePHP
CakePHP是一个PHP快速开发框架,它提供了一个用于开发、维护和部署应用程序的可扩展体系。CakePHP使用了众所周知的设计模式,如MVC和ORM,降低了开发成本,并减少了开发人员写代码的工作量。
2. CodeIgniter
CodeIgniter是一个非常小且功能强大的PHP框架,适合需
- 评"救市后中国股市新乱象泛起"谣言
nannan408
首先来看百度百家一位易姓作者的新闻:
三个多星期来股市持续暴跌,跌得投资者及上市公司都处于极度的恐慌和焦虑中,都要寻找自保及规避风险的方式。面对股市之危机,政府突然进入市场救市,希望以此来重建市场信心,以此来扭转股市持续暴跌的预期。而政府进入市场后,由于市场运作方式发生了巨大变化,投资者及上市公司为了自保及为了应对这种变化,中国股市新的乱象也自然产生。
首先,中国股市这两天
- 页面全屏遮罩的实现 方式
Rainbow702
htmlcss遮罩mask
之前做了一个页面,在点击了某个按钮之后,要求页面出现一个全屏遮罩,一开始使用了position:absolute来实现的。当时因为画面大小是固定的,不可以resize的,所以,没有发现问题。
最近用了同样的做法做了一个遮罩,但是画面是可以进行resize的,所以就发现了一个问题,当画面被reisze到浏览器出现了滚动条的时候,就发现,用absolute 的做法是有问题的。后来改成fixed定位就
- 关于angularjs的点滴
tntxia
AngularJS
angular是一个新兴的JS框架,和以往的框架不同的事,Angularjs更注重于js的建模,管理,同时也提供大量的组件帮助用户组建商业化程序,是一种值得研究的JS框架。
Angularjs使我们可以使用MVC的模式来写JS。Angularjs现在由谷歌来维护。
这里我们来简单的探讨一下它的应用。
首先使用Angularjs我
- Nutz--->>反复新建ioc容器的后果
xiaoxiao1992428
DAOmvcIOCnutz
问题:
public class DaoZ {
public static Dao dao() { // 每当需要使用dao的时候就取一次
Ioc ioc = new NutIoc(new JsonLoader("dao.js"));
return ioc.get(