- uniapp 使用web-view 来套地址实现分离式打包
luckycoke
uni-appjavascript前端
exportdefault{data(){return{title:'http://www.baidu.cn/'//你可以根据需要替换成你的URL};},mounted(){//在应用启动时清除本地缓存this.clearAppCache();},methods:{clearAppCache(){if(uni.getSystemInfoSync().platform==='android'){//
- cesium 加载本地json、GeoJson数据
前端熊猫
Cesiumjson前端
GeoJSON是一种用于编码地理数据结构的格式{"type":"Feature","geometry":{"type":"Point","coordinates":[125.6,10.1]},"properties":{"name":"某地点"}}一、直接加载GeoJSON文件//方式1:通过GeoJsonDataSource加载viewer.dataSources.add(Cesium.GeoJ
- 【产品小白】产品思维与技术思维的区别
百事不可口y
产品经理的一步一步产品经理用户运营内容运营学习人工智能大数据新媒体运营
一、两种思维的本质差异与互补性维度产品思维技术思维核心关注点用户价值(痛点/爽点)、商业目标(盈利/增长)技术实现(架构/性能)、系统稳定性(可用性/扩展性)决策依据用户行为数据、市场趋势、ROI模型技术复杂度、开发成本、技术债评估问题解决路径从场景出发,构建业务闭环(如“用户如何完成支付?”)从实现出发,拆解技术模块(如“支付接口如何鉴权?”)风险意识担心需求伪命题(无人使用)担忧系统崩溃(高并
- 《DeepSeek-R1 vs ChatGPT-4:AI大模型“王座争夺战”的终极拆解报告》
Athena-H
LLM人工智能gptchatgptai
引言:大模型时代的双雄博弈在生成式AI爆发式迭代的今天,DeepSeek-R1与ChatGPT-4分别以“中国智造新锐”与“全球标杆王者”的身份,掀起技术路线与应用生态的激烈碰撞。本文从架构设计、场景适配、性能极限三大维度,揭示两大模型的真实战力图谱。一、核心技术架构:差异化路线对决对比维度DeepSeek-R1ChatGPT-4模型架构多模态混合专家模型(MoE+Transformer)纯Dec
- JVM内存模型分区
Lionel·
java基础javajvm
JVM内存模型划分根据JVM规范,JVM内存共分为Java虚拟机栈,本地方法栈,堆,方法区,程序计数器,五个部分。1.Java堆(线程共享)Java堆是被所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例,几乎所有的对象实例以及数组都要在堆上分配。Java堆是垃圾收集器管理的主要区域,因此很多时候也被称做“GC堆”。从内存回收的角度看,由于现在收集器基本都采用分代
- Coze扣子专业版计费规则调整一览
落笔画忧愁e
扣子商店Coze插件
就在今晚(2025-01-24),扣子更新了专业版的计费规则更新时间:2025年2月中旬主要更新内容:新增扣子资源包,原智能体资源包、大模型资源包下架。专业版用户每日赠送500资源点(仅限当日有效),可抵扣智能体调用费用和模型调用费用语音识别API、语音合成API、实时音视频SDK全面开放,无需申请即可使用更新详解:智能体资源包、大模型资源包下架处理,剩余资源用量使用完毕后,不支持续费。新增扣子资
- sklearn.ConfusionMatrixDisplay可视化混淆矩阵
Cachel wood
python机器学习和数据挖掘sklearn矩阵人工智能python机器学习vue.jsjava
文章目录ConfusionMatrixDisplay详细解释更多定制化ConfusionMatrixDisplayConfusionMatrixDisplay是scikit-learn库中用于可视化混淆矩阵的一个实用工具。混淆矩阵是一种常用的评估分类模型性能的工具,它可以直观地展示模型在各个类别上的预测结果与真实标签之间的关系。下面详细介绍如何使用ConfusionMatrixDisplay进行混
- handpose_X 之 onnx runtime C++(手部关键点检测)
Xian-HHappy
手部关键点检测ONNXONNXRuntimeC++推理模型转换
handpose_X之onnxruntime相关项目地址:1、手部关键点检测项目地址:https://gitcode.net/EricLee/handpose_x该项目中通过脚本model2onnx.py,将.pth模型转为.onnx模型。示例视频:开源项目-手势识别手势检测手部21关键点检测2、手部关键点检测onnx模型,onnxruntimeC++模型推理。项目地址:https://gitco
- Fastgpt本地或服务器私有化部署常见问题
泰山AI
AI大模型应用开发fastgptragllm
一、错误排查方式遇到问题先按下面方式排查。dockerps-a查看所有容器运行状态,检查是否全部running,如有异常,尝试dockerlogs容器名查看对应日志。容器都运行正常的,dockerlogs容器名查看报错日志带有requestId的,都是OneAPI提示错误,大部分都是因为模型接口报错。无法解决时,可以找找Issue,或新提Issue,私有部署错误,务必提供详细的日志,否则很难排查。
- Fastgpt接入Whisper本地模型实现语音识别输入
泰山AI
AI大模型应用开发AI语音模型gptragfastgpt
前言FastGPT默认使用了OpenAI的LLM模型和语音识别模型,如果想要私有化部署的话,可以使用openai开源模型Whisper。参考文章《openai开源模型Whisper语音转文本模型下载使用》FastGPT接入本地AI语音TTS首先打开one-api网址添加一个自定义渠道设置BaseUrl、模型、鉴权等信息BaseUrl为你部署本地语音识别web项目baseurl,图标上的是以我写的开
- 无需配置!深脑云一键启用DeepSeek全系AI模型
小深ai硬件分享
人工智能深度学习服务器
解锁无限算力潜能,开启DeepSeek镜像云算力新征程!在人工智能风起云涌的时代,算力就是驱动创新的引擎,而优质的模型镜像则是引领变革的密钥。我们向您介绍一下我们的深脑云算力平台,这里汇聚了DeepSeek的各大版本镜像,为您的科研、开发与创新之路注入强大动力!强大的DeepSeek模型家族DeepSeek,作为AI领域的璀璨明星,以其卓越的性能和先进的技术架构闻名遐迩。我们的平台精心整合了Dee
- FastGPT接入向量模型 M3E 和 重排模型 bge-reranker-large
福葫芦
M3EM3EFASTGPT
一、FastGPT接入向量模型M3E1.拉取m3e镜像#GPU模式启动,并把m3e加载到fastgpt同一个网络dockerpullregistry.cn-hangzhou.aliyuncs.com/fastgpt_docker/m3e-large-api2.查看镜像dockerimages可以按照有一个名称为registry.cn-hangzhou.aliyuncs.com/fastgpt_do
- 如果MLlib 中没有所需要的模型,如何使用 Spark 进行分布式训练?
是纯一呀
WSLDockerAIspark分布式mllib
如果MLlib中没有你所需要的模型,并且不打算结合更强大的框架(如TensorFlowOnSpark或Horovod),仍然可以使用Spark进行分布式训练,但需要手动处理训练任务的分配、数据准备、模型训练、结果合并和模型更新等过程。模型训练阶段将模型的训练任务分配到Spark集群的各个节点。数据并行:每个节点会处理数据的不同部分,并计算该部分的梯度或模型参数。自定义算法:如果使用的是自定义算法(
- 使用BLIP模型生成图像描述的可查询索引
dgay_hua
python计算机视觉开发语言
在本篇文章中,我们将介绍如何使用预训练的SalesforceBLIP图像描述模型,生成一个可查询的图像描述索引。我们将使用ImageCaptionLoader来加载图像,并通过一系列步骤生成查询索引。使用示例代码进行演示,帮助读者理解和实践。技术背景介绍随着计算机视觉技术的发展,图像描述生成成为了重要的研究领域。通过对图像内容自动生成文字描述,可以大大提高对图像信息的检索和管理效率。Salesfo
- 卷积神经网络之AlexNet经典神经网络,实现手写数字0~9识别
知识鱼丸
深度学习神经网络cnn人工智能深度学习AlexNet经典神经网络
深度学习中较为常见的神经网络模型AlexNet,AlexNet是一个采用GPU训练的深层CNN,本质是种LeNet变体。由特征提取层的5个卷积层两个下采样层和分类器中的三个全连接层构成。先看原理:AlexNet网络特点采用ReLU激活函数,使训练速度提升6倍采用dropout层,防止模型过拟合通过平移和翻转的方式对数据进行增强采用LRN局部响应归一化,限制数据大小,防止梯度消失和爆炸。但后续证明批
- 百万架构师第四十课:RabbitMq:RabbitMq-工作模型与JAVA编程|JavaGuide
后端
来源:https://javaguide.netRabbitMQ1-工作模型与Java编程课前准备预习资料Windows安装步骤Linux安装步骤官网文章中文翻译系列环境说明操作系统:CentOS7JDK:1.8Erlang:19.0.4或最新版RabbitMQ:3.6.12或最新版版本对应关系典型应用场景跨系统的异步通信。人民银行二代支付系统,使用重量级消息队列IBMMQ,异步,解耦,削峰都有体
- DeepSeek掀起推理服务器新风暴,AI应用迎来变革转折点?
小深ai硬件分享
人工智能大数据
AI浪潮下,推理服务器崭露头角在科技飞速发展的当下,AI是耀眼明星,席卷各行业,深刻改变生活与工作模式,从语音助手到医疗诊断、金融风险预测,AI无处不在。其发展分数据收集整理、模型训练、推理应用三个阶段,过去重模型训练,如今大量预训练模型出现,如何高效应用成新挑战,推理服务器应运而生。推理服务器是运行AI模型、对输入数据实时分析预测的硬件设备,堪称AI应用“幕后英雄”。在自动驾驶、智能安防、电商推
- 利用人工智能增强可读性:自动为文本添加标点符号
姚家湾
AI标点符号
在数字通信时代,文本的清晰度和可读性至关重要。无论是转录口语、处理原始文本数据还是改进用户生成的内容,标点符号在传达预期信息方面都起着至关重要的作用。但是,手动编辑文本以添加标点符号可能非常耗时且容易出错。这就是人工智能(AI)发挥作用的地方,它提供了一种强大的解决方案,可以自动将标点符号插入句子中。目前,利用大模型的能力,完全可以胜任添加标点符号的工作,不需要其它特别的处理程序。参考代码from
- 用 TensorFlow 搭建简单的手写数字识别模型
lozhyf
工作面试学习tensorflow人工智能python
一、引言手写数字识别是机器学习领域中一个经典且基础的问题,它在很多实际场景中都有广泛的应用,比如邮政系统中的邮件分拣、银行支票金额识别等。TensorFlow是一个强大的开源机器学习框架,由Google开发并维护,它提供了丰富的工具和接口,能帮助我们快速搭建和训练深度学习模型。在这篇博客中,我们将使用TensorFlow构建一个简单的神经网络模型,用于识别手写数字。二、环境准备在开始之前,你需要安
- 【CVPR 2021】Knowledge Review:知识蒸馏新解法
BIT可达鸭
深度学习人工智能计算机视觉模型压缩知识蒸馏
【CVPR2021】KnowledgeReview:知识蒸馏新解法论文地址:主要问题:主要思路:符号假设:具体实现:实验结果:关注我的公众号:联系作者:论文地址:https://jiaya.me/papers/kdreview_cvpr21.pdf主要问题:目前大部分关于KD的方法都是基于相同层或者相同Block之间的知识迁移。但是Teacher往往深层表示抽象的语义信息,底层表示简单的知识的信息
- DeepSeek使用中的问题及解决方案(部分)
WeiLai1112
DeepSeek人工智能
1.模型部署与配置问题问题1:环境依赖冲突现象:安装模型依赖库时出现版本不兼容(如Python、PyTorch版本冲突)。解决方案:使用虚拟环境(如conda或venv)隔离依赖。严格按照官方文档的版本要求安装依赖,例如:condacreate-ndeepseekpython=3.9condaactivatedeepseekpipinstalltorch==2.0.1transformers==4
- vue3 项目如何接入 AI 大模型
代码搬运媛
人工智能
以下是在Vue3项目中接入AI大模型的一般步骤:准备工作确定要接入的AI模型,如OpenAI的gpt-3.5-turbo、科大讯飞的星火大模型等。选择AI模型及获取API密钥:注册对应AI平台的账号,进入账户设置页面找到“ViewAPIKeys”或类似选项,创建属于自己的API密钥,并妥善保存。创建Vue项目并安装依赖打开命令行,使用vuecreate项目名命令创建一个新的Vue项目,按照提示完成
- deepseek_各个版本django特性
终是蝶衣梦晓楼
django数据库python
以下是Django2.0至5.0的主要区别总结,按版本特性分类说明:1.Django2.0的主要变化Python支持仅支持Python3.4+,不再兼容Python2.x。路由系统弃用url(),引入path()和re_path()替代,path()默认不支持正则表达式,但提供内置转换器(如)进行参数类型匹配。支持更简洁的URL配置语法(例如path('articles//',views.year
- TensorFlow LiteRT 概览
姚家湾
tensorflow人工智能python
LiteRT(简称LiteRuntime,以前称为TensorFlowLite)是Google面向设备端AI的高性能运行时。您可以找到适用于各种机器学习/AI任务的LiteRT就绪模型,也可以使用AIEdge转换和优化工具将TensorFlow、PyTorch和JAX模型转换为TFLite格式并运行。主要特性针对设备端机器学习进行了优化:LiteRT解决了五项关键的ODML约束条件:延迟时间(无需
- 百度极速版APP 自动脚本 javascript代码
zaxjb123
dubbo
使用JavaScript编写针对百度极速版APP的自动化脚本通常涉及到使用WebView测试框架,比如Puppeteer或Selenium,这些工具允许你控制一个浏览器或WebView环境,从而与网页或APP中的Web内容进行交互。然而,对于原生APP(如百度极速版)的自动化测试,通常需要使用专门的移动应用自动化框架,如Appium。Appium支持多种编程语言,包括JavaScript。要使用J
- 【拥抱AI】一文讲清楚MCP(Model Context Protocol)核心功能及应用
奔跑草-
人工智能人工智能LLM自然语言处理MCPFunctioncall
什么是MCP(ModelContextProtocol)?MCP(ModelContextProtocol)是Anthropic推出的一个开放协议,旨在统一LLM应用与外部数据源和工具之间的通信协议,为AI开发提供了标准化的上下文交互方式。MCP的主要功能包括数据集成、工具集成、模板化交互、安全性、开发者支持、预构建服务器和上下文维护。它通过客户端-服务器架构,支持多个服务连接到任何兼容的客户端,
- 使用 Rebuff 进行Prompt Injection的检测和防护
scaFHIO
promptpython
技术背景介绍在AI应用领域,PromptInjection(PI)攻击是一种通过恶意输入操控AI模型行为的攻击方式。这可能导致严重的安全问题,比如数据泄露、执行未授权的操作等。因此,检测和防护PI攻击对保障AI系统安全至关重要。Rebuff是一个自硬化的PromptInjection检测器,通过多阶段防御机制来保护AI应用免受PI攻击。本文将介绍Rebuff的核心原理、代码实现及其在实际开发中的应
- 华为的云端训练算力与迭代效率
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
华为云、云端训练、算力、迭代效率、人工智能、深度学习、模型训练、分布式训练、优化算法1.背景介绍人工智能(AI)技术近年来发展迅速,深度学习作为其核心驱动力,在图像识别、自然语言处理、语音识别等领域取得了突破性进展。然而,深度学习模型的训练需要海量数据和强大的计算资源,这成为AI技术发展面临的瓶颈之一。云计算作为一种新型的计算模式,为深度学习提供了强大的算力支持。华为云作为国内领先的云计算平台,在
- 使用Yuan 2.0与LangChain构建智能聊天应用:完整指南
scaFHIO
langchainpython
技术背景介绍Yuan2.0是IEIT系统开发的新一代基础大语言模型,包括Yuan2.0-102B、Yuan2.0-51B和Yuan2.0-2B三种版本。相比之前的Yuan1.0,Yuan2.0使用了更广泛的高质量预训练数据,并通过指令微调数据集增强了模型的语义理解、数学推理、编程知识等能力。为了方便开发者集成,Yuan2.0提供了兼容OpenAIAPI的服务接口。本文将介绍如何通过LangChai
- 使用LM Studio在WordPress基于大模型原创文章上稿进行SEO优化
Mr数据杨
Python自然语言技术wordpress大模型seo1024程序员节
在进行自动化文章生成与发布的流程中,首先需要确保基础配置的完善性和数据的准确性。通过手动设置分类和标签,文章能够在发布时被准确归类,从而提升SEO的效果。通过Excel表格的方式管理这些分类与标签,结合Python脚本,可以高效地实现自动化文章的生成和发布。该流程依赖于对WordPress数据库的操作,包括标签的批量导入、分类和标签的映射,以及通过AI生成内容的自动发布。全面的配置不仅节省了手动处
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数