POJ——1328 Radar Installation(区间覆盖问题)

Radar Installation
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 65881   Accepted: 14767

Description

Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d. 

We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates. 
POJ——1328 Radar Installation(区间覆盖问题)_第1张图片 
Figure A Sample Input of Radar Installations

Input

The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases. 

The input is terminated by a line containing pair of zeros 

Output

For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.

Sample Input

3 2
1 2
-3 1
2 1

1 2
0 2

0 0

Sample Output

Case 1: 2

Case 2: 1

区间覆盖问题,想了好久,根据所给的坐标判断在x轴上的覆盖范围,排序,然后用贪心思想解决。

#include<iostream> #include<stdio.h> #include<string.h> #include<math.h> #include<ctype.h> #include<stdlib.h> #include<string> #include<algorithm> #include<vector> #include<set> #include<map> #include<list> #include<queue> #include<stack> #include<iomanip> #include<numeric> #include <istream>     //基本输入流 #include <ostream>     //基本输出流 #include <sstream>     //基于字符串的流 #include <utility>     //STL 通用模板类 #include <complex.h>   //复数处理 #include <fenv.h>    //浮点环境 #include <inttypes.h>  //整数格式转换 #include <stdbool.h>   //布尔环境 #include <stdint.h>   //整型环境 #include <tgmath.h>   //通用类型数学宏 #define L(a,b,c) for(int a = b;a >= c;a --) #define M(a,b,c) for(int a = b;a < c;a ++) #define N(a,b) memset(a,b,sizeof(a)); const int INF=1<<31; const int inf=-INF; typedef int T; typedef double D; typedef char C; using namespace std; struct node {     double x;     double y; } s[1010],temp; bool comp (node x,node y) {     return x.x<y.x; } int main() {     int n,num=0;     double a,b;     double r;     while(~scanf("%d%lf",&n,&r))     {         if(n==0&&r==0)             break;         bool flag=0;         M(i,0,n)         {             cin>>a>>b;             if(fabs(b)>r)           ///若大于r,则说明该点不能被覆盖                 flag=1;             else             {                 s[i].x=a*1.0-sqrt(r*r-b*b);                 s[i].y=a*1.0+sqrt(r*r-b*b);             }         }         printf("Case %d: ",++num);         if(flag)         {             printf("-1\n");         }         else         {                       ///贪心思想             int count=1;             sort(s,s+n,comp);             temp=s[0];             M(i,1,n)             {                 if(temp.y<s[i].x)                 {                     ++ count;                     temp=s[i];                 }                 else                     temp.y=min(temp.y,s[i].y);      ///找出覆盖的最小区间             }             printf("%d\n",count);         }     }     return 0; }

你可能感兴趣的:(算法,ACM,poj,贪心)