K-Nearest Neighbor Classifier (邻近算法)

K-Nearest Neighbor Classifier (邻近算法)_第1张图片
Given training data (X(1),D(1)), (X(2),D(2)), …, (X(N),D(N))

Define a distance metric between points in inputs space. Common measures are:

Euclidean Distance


Given test point X

Find the K nearest training inputs to X
Denote these points as 

(X(1),D(1)), (X(2), D(2)), …, (X(k), D(k))

The class identification of X

Y = most common class in set {D(1), D(2), …, D(k)}

K-Nearest Neighbor Classifier (邻近算法)_第2张图片
Use N fold cross validation – Pick K to minimize the cross validation error
(N折交叉验证,找到找到使错误率最小的k)

For each of N training example
(对于每一轮训练执行以下步骤)
Find its K nearest neighbours
Make a classification based on these K neighbours
Calculate classification error
Output average error over all examples

Use the K that gives lowest average error over the N training examples

你可能感兴趣的:(机器学习,模式识别)