POJ 3744 Scout YYF I(概率DP)

传送门
Scout YYF I
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 7221 Accepted: 2106
Description

YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into the enemy’s base. After overcoming a series difficulties, YYF is now at the start of enemy’s famous “mine road”. This is a very long road, on which there are numbers of mines. At first, YYF is at step one. For each step after that, YYF will walk one step with a probability of p, or jump two step with a probality of 1-p. Here is the task, given the place of each mine, please calculate the probality that YYF can go through the “mine road” safely.
Input

The input contains many test cases ended with EOF.
Each test case contains two lines.
The First line of each test case is N (1 ≤ N ≤ 10) and p (0.25 ≤ p ≤ 0.75) seperated by a single blank, standing for the number of mines and the probability to walk one step.
The Second line of each test case is N integer standing for the place of N mines. Each integer is in the range of [1, 100000000].
Output

For each test case, output the probabilty in a single line with the precision to 7 digits after the decimal point.
Sample Input

1 0.5
2
2 0.5
2 4
Sample Output

0.5000000
0.2500000
Source

POJ Monthly Contest - 2009.08.23, Simon

题目大意:
有一个雷区,这个雷区有 n 个雷,有一个人想安全的走过这个雷区,每次只能走一步或者是两步,走一步的概率就是 p, 两步的概率就是 1-p,让你求的就是这个人安全走过雷区的概率。

解题思路:
首先一看到这是一个关于概率的问题,那么我们可以想到这就可能是一个概率DP的问题,我们来分析一下。我们假设 DP[i]是安全走到 i 点的概率,那么我们可以这么想 如果要想安全走到 i 点,一定是安全走到 i-1 点在走一步,或者是安全走到 i-2点 在走两步,那么我们可以大恶道递推方程:

DP[i]==pDP[i1]+(1p)DP[i2]

得到这个方程之后呢,我们来分析一下雷的点的坐标是 [1, 100000000],如果我们直接用上面的公式来做的话,首先声明数组的时候就会出现问题,其次也会超时。那么我们应该怎么样来做呢,我们通过这个递推方程我们可以想到构造一个矩阵:
(DP[i1],DP[i2]){A}==(DP[i],DP[i1])

又因为 DP[i] = Dp[i-1] p + DP[i-2] (1-p);
矩阵 A=
p1p10

那么
DP[n]=An1.mat[0[0]]

解决了这个问题之后我们再来看一下这个题目,我们要求的是安全渡过雷区的概率,那么那些有雷的点就将雷区分成了若干个区域,而我们只需要求出安全度过那些有雷的点的区域然后相乘就行了,假如第 i 和 j 个点有雷,那么j-i-1就是安全的,所以我们只要求出 矩阵A^(j-i-2)次方然后每次都乘起来就行了,首先要判断一下第一个位置有没有雷,如果第一个位置有雷那么直接就会被炸死了,如果i和i+1个位置都有雷的话,也是会被炸死的,在进行算的时候首先进行排序,因为给定的数据不是排好序的。

My Code:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAXN = 2;
typedef struct
{
    double mat[MAXN][MAXN];
} Matrix;

double p;
Matrix PP = {p, 1,
             1-p,0,
            };

Matrix I = {1, 0,
            0, 1,
           };
Matrix Mul_Matrix(Matrix a, Matrix b)
{
    Matrix c;
    for(int i=0; i<MAXN; i++)
    {
        for(int j=0; j<MAXN; j++)
        {
            c.mat[i][j] = 0;
            for(int k=0; k<MAXN; k++)
                c.mat[i][j] += a.mat[i][k] * b.mat[k][j];
        }
    }
    return c;
}
Matrix quick_Matrix_Mod(int m)
{
    Matrix ans = I, a = PP;
    while(m)
    {
        if(m & 1)
            ans = Mul_Matrix(ans, a);
        m>>=1;
        a = Mul_Matrix(a, a);
    }
    return ans;
}
int a[15];
int main()
{
    int n;
    a[0] = 0;
    while(cin>>n>>p)
    {
        for(int i=1; i<=n; i++)
            cin>>a[i];
        sort(a+1, a+n+1);
        PP.mat[0][0] = p;
        PP.mat[0][1] = 1-p;
        if(a[1] == 1)
        {
            printf("%.7lf\n",0.0);
            continue;
        }
        double ans = 1.0;
        Matrix ret = I;
        int k=n+1;
        for(int i=1; i<=n; i++)
        {
            if(a[i] == a[i-1])
                continue;
            if(a[i] == a[i-1]+1)///不加这句话会超时(在这种情况下一定是踩雷的)
            {
                k = i;
                break;
            }
            ret = quick_Matrix_Mod(a[i]-a[i-1]-2);
            ///cout<<"ret.mat[0][0] == "<<ret.mat[0][0]<<endl;
            ans *= (ret.mat[0][0])*(1-p);
        }
        if(k <= n)
            printf("%.7lf\n",0.0);
        else
        printf("%.7lf\n",ans);
    }
    return 0;
}

你可能感兴趣的:(概率DP)