hdu1151最小路径覆盖

思路:一个士兵只能访问邻近的点,但是不能回头,相当于是访问一条边,问最少需要的士兵数;

显然就是一个最小路径覆盖问题;

ps:最小路径覆盖数 = 顶点数 - 最大匹配数;

时间效率:O(V * E)

题目链接

/*****************************************
Author      :Crazy_AC(JamesQi)
Time        :2015
File Name   :
*****************************************/
// #pragma comment(linker, "/STACK:1024000000,1024000000")
#include <iostream>
#include <algorithm>
#include <iomanip>
#include <sstream>
#include <string>
#include <stack>
#include <queue>
#include <deque>
#include <vector>
#include <map>
#include <set>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include <limits.h>
using namespace std;
#define MEM(a,b) memset(a,b,sizeof a)
#define pk push_back
template<class T> inline T Get_Max(const T&a,const T&b){return a < b?b:a;}
template<class T> inline T Get_Min(const T&a,const T&b){return a < b?a:b;}
typedef long long ll;
typedef pair<int,int> ii;
const int inf = 1 << 30;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
const int N = 510;
int link[N];
int vis[N];
int gg[N][N];
int n,m;

bool dfs(int u){
	for (int i = 1;i <= n;++i){
		if (!vis[i] && gg[u][i]){
			vis[i] = 1;
			if (link[i] == -1 || dfs(link[i])){
				link[i] = u;
				// link[u] = i;
				return true;
			}
		}
	}
	return false;
}

inline int Hungary(){
	int ret = 0;
	MEM(link, -1);
	for (int i = 1;i <= n;++i){
			MEM(vis, 0);
			if (dfs(i)) ret++;
	}
	return ret;
}

int main()
{	
	// ios::sync_with_stdio(false);
	// freopen("in.txt","r",stdin);
	// freopen("out.txt","w",stdout);
	int T;
	cin >> T;
	while(T--){
		cin >> n >> m;
		MEM(gg, 0);
		int a,b;
		while(m--){
			cin >> a >> b;
			gg[a][b] = 1;
		}
		int ans = Hungary();
		// cout << ans << endl;
		cout << n - ans << endl;
	}
	return 0;
}


你可能感兴趣的:(图论,二分图匹配)