- LDPC编译码中的Tanner图详解与MATLAB仿真
fpga和matlab
板块4:编码译码matlabLDPC编译码Tanner图
目录1.LDPC码的Tanner图表示2.Tanner图的结构与表示2.1环(Cycle)2.2节点度(Degree)2.3二分图的周长(Girth)3.用MATLAB表示Tanner图LDPC码(低密度奇偶校验码)是一种性能接近香农极限的线性分组码,由Tanner图表示其结构,通过迭代消息传递算法实现高效译码。1963年,Gallager(麻省理工罗伯特·加拉格尔院士)在其博士论文中提出了LDP
- 题解:luogu.P1330 封锁阳光大学(图论配套精选专练)
枯骨崖烟
图论
题目:P1330封锁阳光大学题意建模有给定一张图,个点,条边,能否将整张图二分。算法分析现在要求对若干条边进行染色即能否将整张图二分。这是二分图的常见处理方法。怎样染色?定义状态,表示在当前状态下,是哪一个节点();又是哪一种颜色()。那么现在就很明显,对整张图进行遍历,这里可以选用深度优先(),也可以选用广度优先()。我们给出前者的CODE如下:参考程序//luogu.P1330.DFS实现#i
- 二分图 学习笔记
Clove_unique
二分图学习笔记
很久之前就学过二分图,但是感觉当时理解的并不好。今天重新复习了一下二分图——fornoip,在此写下一些新的体会。二分图的定义摘自ATP的blog——二分图顾名思义就是可以分成两部分的图。并且这两部分内部不能有边相连。形式化地,定义图G={V,E},A是G的一个子集。如果对于∀(x,y)∈E,都有(x∈A)∧(y∈S−A)或者(y∈A)∧(x∈S−A)
- 算法笔记.染色法判断二分图
xin007hoyo
算法笔记数据结构
题目:(来自AcWing)给定一个n个点m条边的无向图,图中可能存在重边和自环。请你判断这个图是否是二分图。输入格式第一行包含两个整数n和m。接下来m行,每行包含两个整数u和v,表示点u和点v之间存在一条边。输出格式如果给定图是二分图,则输出Yes,否则输出No。数据范围1≤n,m≤105输入样例:4413142324输出样例:Yes染色法思路:遍历每一个节点,看这个节点是否染色,如果没有染色,则
- E-奇环(染色判断二分图+简单环判断)
WYW___
染色法二分图
E-奇环_牛客练习赛106(nowcoder.com)题目描述有一张n个点的无向完全图,初始时任意两点间存在一条边(共"X(1)条边)。现从中删除m条边,删除的第i条边为ui,vi,判断删完这m条边的图中是否存在奇环。。无向完全图:若无向简单图G中任意不同两点间均存在边相连,则称G为无向完全图。(无向简单图指没有重边和自环的无向图)。奇环:指点的数量为奇数的简单环(简单环即没有重复边的环路)。关于
- acwing算法提高之图论--二分图
YMWM_
AcwingC++学习算法图论
目录1介绍2训练3参考1介绍本专题用来记录二分图的题目。以下条件互相等价:一个图是二分图。染色法过程中不存在矛盾。图中不存在奇数环。二分图本质上是一个无向图的问题!结论:最大匹配数=最小点覆盖=总点数-最大独立集=总点数-最小路径覆盖2训练题目1:257关押罪犯C++代码如下,#include#include#includeusingnamespacestd;typedefpairPII;cons
- 蓝桥杯备战资料从0开始!!!(python B组)(最全面!最贴心!适合小白!蓝桥云课)图论
手可摘星chen.
蓝桥杯python图论
注:你的关注,点赞,评论让我不停更新一、蓝桥杯图论常见题型最短路径问题单源最短路径(Dijkstra算法)多源最短路径(Floyd-Warshall算法)带有负权边的最短路径(Bellman-Ford算法)最小生成树(MST)Kruskal算法(并查集+贪心)Prim算法(优先队列优化)遍历与连通性DFS/BFS求连通块强连通分量(Tarjan算法)网络流与匹配二分图匹配(匈牙利算法)最大流问题(
- python --- 二分图匈牙利算法和KM算法
shadowsland
python
基础概念关于匈牙利算法的基础概念就不作具体描述了,不清楚的可以自己搜索相关知识主要需要了解的知识点二分图匹配:最大匹配,完美匹配路径:交错路径,增广路径算法核心:通过不断寻找增广路径找到最大匹配的道路算法实现1.使用线性规划库scipy默认取最小组合,设置maximize为True时取最大组合importnumpyasnpfromscipy.optimizeimportlinear_sum_ass
- 匈牙利算法----求二分图最大匹配
henulmh
模板题:HDOJ_2063_过山车RPGGirls今天和大家一起去游乐场玩,终于可以坐上梦寐以求的过山车了。可是,过山车的每一排只有两个座位,而且还有条不成文的规矩,就是每个女生必须找一个男生做Partner和她同坐。但是,每个女孩都有各自的想法,举个例子吧,Rabbit只愿意和XHD或PQK做Partner,Grass只愿意和linle或LL做Partner,PrincessSnow愿意和水域浪
- 二分图算法
南星啊
算法模板#网络流算法
#PermanentNotes/algorithm匈牙利算法推荐视频D25二分图最大匹配匈牙利算法——信息学竞赛算法_哔哩哔哩_bilibili思想主要是围着"腾空间"来实现当我们从A集合,B集合中寻找能够配对的个数时,我们首先枚举每一个集合A,然后,按照下方步骤:假设我们遍历A的第Ai个1.遍历Ai配对的Bi2.此时,如果Bi已经被访问过,我们就返回1否则,就标记3.标记之后,我们判断此时Bi是
- 数据结构与算法-图论-二分图
一个人在码代码的章鱼
#图论算法学习图论算法
关押罪犯(贪心+二分答案+染色法判定二分图/扩展域并查集)题目描述S城现有两座监狱,一共关押着N名罪犯,编号分别为1∼N。他们之间的关系自然也极不和谐。很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突。我们用“怨气值”(一个正整数值)来表示某两名罪犯之间的仇恨程度,怨气值越大,则这两名罪犯之间的积怨越多。如果两名怨气值为c的罪犯被关押在同一监狱,他们俩之间会发生摩擦,并造成影响力为c的
- 手撕力扣之图论:课程表、课程表 II、省份数量、等式方程的可满足性、情侣牵手、 实现 Trie (前缀树)、数组中两个数的最大异或值、判断二分图
weixin_39770712
数据结构与算法leetcode算法
拓扑排序:力扣207.课程表你这个学期必须选修numCourses门课程,记为0到numCourses-1。在选修某些课程之前需要一些先修课程。先修课程按数组prerequisites给出,其中prerequisites[i]=[ai,bi],表示如果要学习课程ai则必须先学习课程bi。例如,先修课程对[0,1]表示:想要学习课程0,你需要先完成课程1。请你判断是否可能完成所有课程的学习?如果可以
- 2022.4.1 图论题目汇总
LGoGoGo!
leetcodejava数据结构职场和发展算法
文章目录前言1.图论基础2.环检测算法3.拓扑排序算法4.判断二分图[5.判断二分图II]6.并查集(UNION-FIND)算法7.最小生成树算法[8.DIJKSTRA算法]9.名人问题前言今天刷完图论部分的题目了,在这篇文章把之前做的题和知识点总结起来,方便以后查找。1.图论基础(https://blog.csdn.net/alyzajlm/article/details/123656979?s
- 24-3-25拓扑+二分图+tarjan
Agnes_A20
c++算法开发语言
确定比赛名次问题(图的拓扑排序+单调队列)原文链接:https://blog.csdn.net/Mitchell_Donovan/article/details/116654722问题描述:有N个比赛队伍(1#include#include#includeusingnamespacestd;voidtopsort(intnumvextex,vector>&matrix,vector&depth){
- 图论 - 一些经典小算法思想(无题目例子)
左灯右行的爱情
图论算法java
经典小算法前言拓扑结构名流问题暴力解法优化解法二分图二分图判定思路前言主要介绍一些有意思的小算法拓扑结构简单来说,把一幅图拉平,而且这个拉平的图里面,所有的箭头方向都是一致的.比如下图所有的箭头都是朝右的.注意:如果是一副有向图存在环,无法进行拓扑排序,因为肯定做不到所有箭头方向一致;那图的拓扑结构如何实现呢?这个特别简单,首先你要先确认好建图时对边的定义!如果有向边定义为[依赖]关系:比如节点2
- 计算机视觉目标检测-DETR网络
next_travel
计算机视觉目标检测人工智能
目录摘要abstractDETR目标检测网络详解二分图匹配和损失函数DETR总结总结摘要DETR(DEtectionTRansformer)是由FacebookAI提出的一种基于Transformer架构的端到端目标检测方法。它通过将目标检测建模为集合预测问题,摒弃了锚框设计和非极大值抑制(NMS)等复杂后处理步骤。DETR使用卷积神经网络提取图像特征,并将其通过位置编码转换为输入序列,送入Tra
- 解决职业摔跤手分类问题的算法与实现
醉心编码
通信软件c/c++技术类算法分类c语言数据结构线性回归链表
解决职业摔跤手分类问题的算法与实现引言问题定义算法设计二分图判定算法步骤伪代码C语言实现引言在职业摔跤界,摔跤手通常被分为“娃娃脸”(“好人”)型和“高跟鞋”(“坏人”)型。在任意一对摔跤手之间,都有可能存在竞争关系。本文的目标是设计一个算法,用于判断是否可以将摔跤手划分为“娃娃脸”型和“高跟鞋”型,使得所有的竞争关系都只存在于不同类型选手之间。同时,算法还应在满足时间复杂度O(n+r)的前提下,
- 染色法(判断是否为二分图)
我想进大厂
深度优先算法图论
O(n+m)二分图:可以把所有的点划分到两边,使得边只在集合之间,集合内部没有边。二分图当且仅当图中不含奇数环(边数为奇数条)//二分图-染色法#include#includeusingnamespacestd;constintN=100010,M=200010;intn,m;inth[N],e[N],ne[N],idx;intcolor[N];voidadd(inta,intb){e[idx]=
- 图结构数据的构建-DGL库
SatVision-RS
深度学习杂谈人工智能python
官方文档一、图的特点同构性与异构性相比同构图,异构图里可以有不同类型的节点和边。这些不同类型的节点和边具有独立的ID空间和特征;同构图和二分图只是一种特殊的异构图,它们只包括一种关系节点与边有向图一条边、无向图两条边、加权图具有权重;节点和边可具有多个用户定义的、可命名的特征,用以储存图的节点和边的属性。消息传递(类比神经元)消息传递:定义在每条边上的消息函数,它通过将边上特征与其两端节点的特征相
- 算法分类合集
weixin_30784945
算法分类合集ACM所有算法数据结构栈,队列,链表哈希表,哈希数组堆,优先队列双端队列可并堆左偏堆二叉查找树Treap伸展树并查集集合计数问题二分图的识别平衡二叉树二叉排序树线段树一维线段树二维线段树树状数组一维树状数组N维树状数组字典树后缀数组,后缀树块状链表哈夫曼树桶,跳跃表Trie树(静态建树、动态建树)AC自动机LCA和RMQ问题KMP算法图论基本图算法图广度优先遍历深度优先遍历拓扑排序割边
- ACM算法分类(要学习的东西还很多)
还是太年轻
ACM所有算法数据结构栈,队列,链表哈希表,哈希数组堆,优先队列双端队列可并堆左偏堆二叉查找树Treap伸展树并查集集合计数问题二分图的识别平衡二叉树二叉排序树线段树一维线段树二维线段树树状数组一维树状数组N维树状数组字典树后缀数组,后缀树块状链表哈夫曼树桶,跳跃表Trie树(静态建树、动态建树)AC自动机LCA和RMQ问题KMP算法图论基本图算法图广度优先遍历深度优先遍历拓扑排序割边割点强连通分
- ACM算法目录
龍木
ACM所有算法数据结构栈,队列,链表哈希表,哈希数组堆,优先队列双端队列可并堆左偏堆二叉查找树Treap伸展树并查集集合计数问题二分图的识别平衡二叉树二叉排序树线段树一维线段树二维线段树树状数组一维树状数组N维树状数组字典树后缀数组,后缀树块状链表哈夫曼树桶,跳跃表Trie树(静态建树、动态建树)AC自动机LCA和RMQ问题KMP算法图论基本图算法图广度优先遍历深度优先遍历拓扑排序割边割点强连通分
- 12.图论1 最短路之dijkstra算法
准确、系统、简洁地讲算法
算法图论深度优先
图论常见类型的图二分图判定:染色法。性质:可以二着色。无奇圈。BFS&DFS树的直径模板两遍dfs/bfs,证明时反证法的核心是用假设推出矛盾。设1是一开始随机选的点,s是与其最远的点,证明s是直径的一端。反证:假设s不是直径的一端,ss是直径的一端。现在要做的就是证明ss是直径的一端是错误的,从而不存在s的反面的情况即可完成证明。要证ss是直径的一端是错误的,那么要将ss所在的最长的径与直径比较
- 第三章 搜索与图论(三)(最小生成树,二分图)
一只程序媛li
蓝桥准备图论算法
一、最小生成树算法稠密图使用prim算法,稀疏图使用kruskal算法二、prim算法求最小生成树prim和dijkstra算法类似,都是找到符合某种条件的点,然后更新。prim使用到已经构成的部分最小树所有结点中最小的距离。dijkstra算法是使用到起点最小的距离。#include//858prim最小生成树(稠密图做法)usingnamespacestd;constintN=210,INF=
- 378. 骑士放置(二分图最大独立集,匈牙利算法)
Landing_on_Mars
#二分图算法数据结构图论
378.骑士放置-AcWing题库给定一个N×M的棋盘,有一些格子禁止放棋子。问棋盘上最多能放多少个不能互相攻击的骑士(国际象棋的“骑士”,类似于中国象棋的“马”,按照“日”字攻击,但没有中国象棋“别马腿”的规则)。输入格式第一行包含三个整数N,M,T,其中T表示禁止放置的格子的数量。接下来T行每行包含两个整数x和y,表示位于第x行第y列的格子禁止放置,行列数从1开始。输出格式输出一个整数表示结果
- 373. 車的放置 (二分图最大匹配)
Landing_on_Mars
#二分图算法数据结构图论
373.車的放置-AcWing题库给定一个N行M列的棋盘,已知某些格子禁止放置。问棋盘上最多能放多少个不能互相攻击的車。車放在格子里,攻击范围与中国象棋的“車”一致。输入格式第一行包含三个整数N,M,T,其中T表示禁止放置的格子的数量。接下来T行每行包含两个整数x和y,表示位于第x行第y列的格子禁止放置,行列数从1开始。输出格式输出一个整数,表示结果。数据范围1≤N,M≤200输入样例:880输出
- 网络流1-5
live4m
1.飞行员配对方案思路:二分图最大匹配问题。匈牙利好写一点,而且自带记录匹配对象。但是既然练网络流就用网络流写吧。建图:源点连接左半部,汇点连接右半部,中间二分图,边权都为1。在残余网络中找匹配对象:利用前向星的成对变换遍历所有边和其反向边,如果当前遍历到的边不是与源点和汇点连接的边,则为二分图中间边,如果反向边边权不为0,即为匹配边(只有有流的边反向边不为0),该边的两端点就是一对答案。ps:题
- 二分图 染色法 + 匈牙利算法
honortech
算法图论深度优先
染色法判断二分图constintN=1e5+10,M=2*N;inte[M],ne[M],h[N],n,m,idx=0,color[N];voidadd(inta,intb){e[idx]=b;ne[idx]=h[a];h[a]=idx++;}booldfs(intu,intc){color[u]=c;//染色该点for(inti=h[u];i!=-1;i=ne[i]){intj=e[i];if(
- 图论练习题
方永锐
图论
图论练习题1.把{1,2,3,4,5}任划分成两个子集。则必有一个子集含有两数及其差。2.在2n(n≥2)个人组成的人群中,每人至少有n个朋友.则存在四阶圈.3.k维立方体:以分量为0或1的k维向量集为顶集,仅当两向量只有一个同位分量相异时,相应的两顶相邻.(k∈Nk\inNk∈N)证:k维立方体是顶数2k,2^k,2k,边数k2k−1k2^{k-1}k2k−1的二分图.4.证明:无环图G必定存在
- 图论练习4
Xing_ke309
图论算法
内容:染色划分,带权并查集,扩展并查集Arpa’sovernightpartyandMehrdad’ssilententering题目链接题目大意个点围成一圈,分为对,对内两点不同染色同时,相邻3个点之间必须有两个点不同染色问构造出一种染色方案解题思路将每对进行的连边看作一类边将为满足相邻3个点必须有两个点不同染色的边,看作二类边满足构造方案,即将个点形成一个二分图,无奇环对于只有一类边,形不成环
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIlinuxPHPandroid
╔-----------------------------------╗┆
- zookeeper admin 笔记
braveCS
zookeeper
Required Software
1) JDK>=1.6
2)推荐使用ensemble的ZooKeeper(至少3台),并run on separate machines
3)在Yahoo!,zk配置在特定的RHEL boxes里,2个cpu,2G内存,80G硬盘
数据和日志目录
1)数据目录里的文件是zk节点的持久化备份,包括快照和事务日
- Spring配置多个连接池
easterfly
spring
项目中需要同时连接多个数据库的时候,如何才能在需要用到哪个数据库就连接哪个数据库呢?
Spring中有关于dataSource的配置:
<bean id="dataSource" class="com.mchange.v2.c3p0.ComboPooledDataSource"
&nb
- Mysql
171815164
mysql
例如,你想myuser使用mypassword从任何主机连接到mysql服务器的话。
GRANT ALL PRIVILEGES ON *.* TO 'myuser'@'%'IDENTIFIED BY 'mypassword' WI
TH GRANT OPTION;
如果你想允许用户myuser从ip为192.168.1.6的主机连接到mysql服务器,并使用mypassword作
- CommonDAO(公共/基础DAO)
g21121
DAO
好久没有更新博客了,最近一段时间工作比较忙,所以请见谅,无论你是爱看呢还是爱看呢还是爱看呢,总之或许对你有些帮助。
DAO(Data Access Object)是一个数据访问(顾名思义就是与数据库打交道)接口,DAO一般在业
- 直言有讳
永夜-极光
感悟随笔
1.转载地址:http://blog.csdn.net/jasonblog/article/details/10813313
精华:
“直言有讳”是阿里巴巴提倡的一种观念,而我在此之前并没有很深刻的认识。为什么呢?就好比是读书时候做阅读理解,我喜欢我自己的解读,并不喜欢老师给的意思。在这里也是。我自己坚持的原则是互相尊重,我觉得阿里巴巴很多价值观其实是基本的做人
- 安装CentOS 7 和Win 7后,Win7 引导丢失
随便小屋
centos
一般安装双系统的顺序是先装Win7,然后在安装CentOS,这样CentOS可以引导WIN 7启动。但安装CentOS7后,却找不到Win7 的引导,稍微修改一点东西即可。
一、首先具有root 的权限。
即进入Terminal后输入命令su,然后输入密码即可
二、利用vim编辑器打开/boot/grub2/grub.cfg文件进行修改
v
- Oracle备份与恢复案例
aijuans
oracle
Oracle备份与恢复案例
一. 理解什么是数据库恢复当我们使用一个数据库时,总希望数据库的内容是可靠的、正确的,但由于计算机系统的故障(硬件故障、软件故障、网络故障、进程故障和系统故障)影响数据库系统的操作,影响数据库中数据的正确性,甚至破坏数据库,使数据库中全部或部分数据丢失。因此当发生上述故障后,希望能重构这个完整的数据库,该处理称为数据库恢复。恢复过程大致可以分为复原(Restore)与
- JavaEE开源快速开发平台G4Studio v5.0发布
無為子
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V5.0版本已经正式发布。
访问G4Studio网站
http://www.g4it.org
2013-04-06 发布G4Studio_V5.0版本
功能新增
(1). 新增了调用Oracle存储过程返回游标,并将游标映射为Java List集合对象的标
- Oracle显示根据高考分数模拟录取
百合不是茶
PL/SQL编程oracle例子模拟高考录取学习交流
题目要求:
1,创建student表和result表
2,pl/sql对学生的成绩数据进行处理
3,处理的逻辑是根据每门专业课的最低分线和总分的最低分数线自动的将录取和落选
1,创建student表,和result表
学生信息表;
create table student(
student_id number primary key,--学生id
- 优秀的领导与差劲的领导
bijian1013
领导管理团队
责任
优秀的领导:优秀的领导总是对他所负责的项目担负起责任。如果项目不幸失败了,那么他知道该受责备的人是他自己,并且敢于承认错误。
差劲的领导:差劲的领导觉得这不是他的问题,因此他会想方设法证明是他的团队不行,或是将责任归咎于团队中他不喜欢的那几个成员身上。
努力工作
优秀的领导:团队领导应该是团队成员的榜样。至少,他应该与团队中的其他成员一样努力工作。这仅仅因为他
- js函数在浏览器下的兼容
Bill_chen
jquery浏览器IEDWRext
做前端开发的工程师,少不了要用FF进行测试,纯js函数在不同浏览器下,名称也可能不同。对于IE6和FF,取得下一结点的函数就不尽相同:
IE6:node.nextSibling,对于FF是不能识别的;
FF:node.nextElementSibling,对于IE是不能识别的;
兼容解决方式:var Div = node.nextSibl
- 【JVM四】老年代垃圾回收:吞吐量垃圾收集器(Throughput GC)
bit1129
垃圾回收
吞吐量与用户线程暂停时间
衡量垃圾回收算法优劣的指标有两个:
吞吐量越高,则算法越好
暂停时间越短,则算法越好
首先说明吞吐量和暂停时间的含义。
垃圾回收时,JVM会启动几个特定的GC线程来完成垃圾回收的任务,这些GC线程与应用的用户线程产生竞争关系,共同竞争处理器资源以及CPU的执行时间。GC线程不会对用户带来的任何价值,因此,好的GC应该占
- J2EE监听器和过滤器基础
白糖_
J2EE
Servlet程序由Servlet,Filter和Listener组成,其中监听器用来监听Servlet容器上下文。
监听器通常分三类:基于Servlet上下文的ServletContex监听,基于会话的HttpSession监听和基于请求的ServletRequest监听。
ServletContex监听器
ServletContex又叫application
- 博弈AngularJS讲义(16) - 提供者
boyitech
jsAngularJSapiAngularProvider
Angular框架提供了强大的依赖注入机制,这一切都是有注入器(injector)完成. 注入器会自动实例化服务组件和符合Angular API规则的特殊对象,例如控制器,指令,过滤器动画等。
那注入器怎么知道如何去创建这些特殊的对象呢? Angular提供了5种方式让注入器创建对象,其中最基础的方式就是提供者(provider), 其余四种方式(Value, Fac
- java-写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
bylijinnan
java
public class CommonSubSequence {
/**
* 题目:写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
* 写一个版本算法复杂度O(N^2)和一个O(N) 。
*
* O(N^2):对于a中的每个字符,遍历b中的每个字符,如果相同,则拷贝到新字符串中。
* O(
- sqlserver 2000 无法验证产品密钥
Chen.H
sqlwindowsSQL ServerMicrosoft
在 Service Pack 4 (SP 4), 是运行 Microsoft Windows Server 2003、 Microsoft Windows Storage Server 2003 或 Microsoft Windows 2000 服务器上您尝试安装 Microsoft SQL Server 2000 通过卷许可协议 (VLA) 媒体。 这样做, 收到以下错误信息CD KEY的 SQ
- [新概念武器]气象战争
comsci
气象战争的发动者必须是拥有发射深空航天器能力的国家或者组织....
原因如下:
地球上的气候变化和大气层中的云层涡旋场有密切的关系,而维持一个在大气层某个层次
- oracle 中 rollup、cube、grouping 使用详解
daizj
oraclegroupingrollupcube
oracle 中 rollup、cube、grouping 使用详解 -- 使用oracle 样例表演示 转自namesliu
-- 使用oracle 的样列库,演示 rollup, cube, grouping 的用法与使用场景
--- ROLLUP , 为了理解分组的成员数量,我增加了 分组的计数 COUNT(SAL)
- 技术资料汇总分享
Dead_knight
技术资料汇总 分享
本人汇总的技术资料,分享出来,希望对大家有用。
http://pan.baidu.com/s/1jGr56uE
资料主要包含:
Workflow->工作流相关理论、框架(OSWorkflow、JBPM、Activiti、fireflow...)
Security->java安全相关资料(SSL、SSO、SpringSecurity、Shiro、JAAS...)
Ser
- 初一下学期难记忆单词背诵第一课
dcj3sjt126com
englishword
could 能够
minute 分钟
Tuesday 星期二
February 二月
eighteenth 第十八
listen 听
careful 小心的,仔细的
short 短的
heavy 重的
empty 空的
certainly 当然
carry 携带;搬运
tape 磁带
basket 蓝子
bottle 瓶
juice 汁,果汁
head 头;头部
- 截取视图的图片, 然后分享出去
dcj3sjt126com
OSObjective-C
OS 7 has a new method that allows you to draw a view hierarchy into the current graphics context. This can be used to get an UIImage very fast.
I implemented a category method on UIView to get the vi
- MySql重置密码
fanxiaolong
MySql重置密码
方法一:
在my.ini的[mysqld]字段加入:
skip-grant-tables
重启mysql服务,这时的mysql不需要密码即可登录数据库
然后进入mysql
mysql>use mysql;
mysql>更新 user set password=password('新密码') WHERE User='root';
mysq
- Ehcache(03)——Ehcache中储存缓存的方式
234390216
ehcacheMemoryStoreDiskStore存储驱除策略
Ehcache中储存缓存的方式
目录
1 堆内存(MemoryStore)
1.1 指定可用内存
1.2 驱除策略
1.3 元素过期
2 &nbs
- spring mvc中的@propertysource
jackyrong
spring mvc
在spring mvc中,在配置文件中的东西,可以在java代码中通过注解进行读取了:
@PropertySource 在spring 3.1中开始引入
比如有配置文件
config.properties
mongodb.url=1.2.3.4
mongodb.db=hello
则代码中
@PropertySource(&
- 重学单例模式
lanqiu17
单例Singleton模式
最近在重新学习设计模式,感觉对模式理解更加深刻。觉得有必要记下来。
第一个学的就是单例模式,单例模式估计是最好理解的模式了。它的作用就是防止外部创建实例,保证只有一个实例。
单例模式的常用实现方式有两种,就人们熟知的饱汉式与饥汉式,具体就不多说了。这里说下其他的实现方式
静态内部类方式:
package test.pattern.singleton.statics;
publ
- .NET开源核心运行时,且行且珍惜
netcome
java.net开源
背景
2014年11月12日,ASP.NET之父、微软云计算与企业级产品工程部执行副总裁Scott Guthrie,在Connect全球开发者在线会议上宣布,微软将开源全部.NET核心运行时,并将.NET 扩展为可在 Linux 和 Mac OS 平台上运行。.NET核心运行时将基于MIT开源许可协议发布,其中将包括执行.NET代码所需的一切项目——CLR、JIT编译器、垃圾收集器(GC)和核心
- 使用oscahe缓存技术减少与数据库的频繁交互
Everyday都不同
Web高并发oscahe缓存
此前一直不知道缓存的具体实现,只知道是把数据存储在内存中,以便下次直接从内存中读取。对于缓存的使用也没有概念,觉得缓存技术是一个比较”神秘陌生“的领域。但最近要用到缓存技术,发现还是很有必要一探究竟的。
缓存技术使用背景:一般来说,对于web项目,如果我们要什么数据直接jdbc查库好了,但是在遇到高并发的情形下,不可能每一次都是去查数据库,因为这样在高并发的情形下显得不太合理——
- Spring+Mybatis 手动控制事务
toknowme
mybatis
@Override
public boolean testDelete(String jobCode) throws Exception {
boolean flag = false;
&nbs
- 菜鸟级的android程序员面试时候需要掌握的知识点
xp9802
android
熟悉Android开发架构和API调用
掌握APP适应不同型号手机屏幕开发技巧
熟悉Android下的数据存储
熟练Android Debug Bridge Tool
熟练Eclipse/ADT及相关工具
熟悉Android框架原理及Activity生命周期
熟练进行Android UI布局
熟练使用SQLite数据库;
熟悉Android下网络通信机制,S