Given a sorted array of integers, find the starting and ending position of a given target value.
Your algorithm's runtime complexity must be in the order of O(log n).
If the target is not found in the array, return [-1, -1]
.
For example,
Given [5, 7, 7, 8, 8, 10]
and target value 8,
return [3, 4]
.
自己写的代码,没有真正的实现二分查找,运行速度相对较慢
class Solution { public: vector<int> searchRange(vector<int>& nums, int target) { int i = 0; int j = nums.size() - 1; int mid; vector<int> res; while (i <= j) { mid = i + (j - i) / 2; if (nums[mid] > target) { j = mid - 1; } else if (nums[mid] < target) { i = mid + 1; } else { int m = mid, n = mid; while (nums[m] == target&&nums[m+1] ==target&&m<nums.size()-1) { m++; } while (nums[n] == target&&nums[n-1] == target&&n>0) { n--; } res.push_back(n); res.push_back(m); return res; } } res.push_back(-1); res.push_back(-1); return res; } };
class Solution { public: vector<int> searchRange(vector<int>& nums, int target) { vector<int> res(2, -1); if(nums.empty()) return res; int high = binarySearchUp(nums, target, 0, nums.size() -1); int low = binarySearchLow(nums, target, 0, nums.size() - 1); if(high >= low) { res[0] = low; res[1] = high; return res; } return res; } private: int binarySearchLow(vector<int>& nums, int target, int begin, int end) { if(begin > end) return begin; int mid = begin + (end - begin) / 2; if(nums[mid] < target) return binarySearchLow(nums, target, mid + 1, end); else return binarySearchLow(nums, target, begin, mid - 1); } int binarySearchUp(vector<int>& nums, int target, int begin, int end) { if(begin > end) return end; int mid = begin + (end - begin) / 2; if(nums[mid] > target) return binarySearchUp(nums, target, begin, mid - 1); else return binarySearchUp(nums, target, mid + 1, end); } };