proc下文件(buddyinfo/vmallocinfo...)

将linux-2.6.35/Documentation/filesystems/proc.txt内容copy至此,以备查。

------------------------------------------------------------------------------
                       T H E  /proc   F I L E S Y S T E M
------------------------------------------------------------------------------
/proc/sys         Terrehon Bowden <[email protected]>        October 7 1999
                  Bodo Bauer <[email protected]>

2.4.x update   Jorge Nerin <[email protected]>      November 14 2000
move /proc/sys   Shen Feng <[email protected]>    April 1 2009
------------------------------------------------------------------------------
Version 1.3                                              Kernel version 2.2.12
           Kernel version 2.4.0-test11-pre4
------------------------------------------------------------------------------
fixes/update part 1.1  Stefani Seibold <[email protected]>       June 9 2009

Table of Contents
-----------------

  0     Preface
  0.1 Introduction/Credits
  0.2 Legal Stuff

  1 Collecting System Information
  1.1 Process-Specific Subdirectories
  1.2 Kernel data
  1.3 IDE devices in /proc/ide
  1.4 Networking info in /proc/net
  1.5 SCSI info
  1.6 Parallel port info in /proc/parport
  1.7 TTY info in /proc/tty
  1.8 Miscellaneous kernel statistics in /proc/stat
  1.9 Ext4 file system parameters

  2 Modifying System Parameters

  3 Per-Process Parameters
  3.1 /proc/<pid>/oom_adj - Adjust the oom-killer score
  3.2 /proc/<pid>/oom_score - Display current oom-killer score
  3.3 /proc/<pid>/io - Display the IO accounting fields
  3.4 /proc/<pid>/coredump_filter - Core dump filtering settings
  3.5 /proc/<pid>/mountinfo - Information about mounts
  3.6 /proc/<pid>/comm  & /proc/<pid>/task/<tid>/comm


------------------------------------------------------------------------------
Preface
------------------------------------------------------------------------------

0.1 Introduction/Credits
------------------------

This documentation is  part of a soon (or  so we hope) to be  released book on
the SuSE  Linux distribution. As  there is  no complete documentation  for the
/proc file system and we've used  many freely available sources to write these
chapters, it  seems only fair  to give the work  back to the  Linux community.
This work is  based on the 2.2.*  kernel version and the  upcoming 2.4.*. I'm
afraid it's still far from complete, but we  hope it will be useful. As far as
we know, it is the first 'all-in-one' document about the /proc file system. It
is focused  on the Intel  x86 hardware,  so if you  are looking for  PPC, ARM,
SPARC, AXP, etc., features, you probably  won't find what you are looking for.
It also only covers IPv4 networking, not IPv6 nor other protocols - sorry. But
additions and patches  are welcome and will  be added to this  document if you
mail them to Bodo.

We'd like  to  thank Alan Cox, Rik van Riel, and Alexey Kuznetsov and a lot of
other people for help compiling this documentation. We'd also like to extend a
special thank  you to Andi Kleen for documentation, which we relied on heavily
to create  this  document,  as well as the additional information he provided.
Thanks to  everybody  else  who contributed source or docs to the Linux kernel
and helped create a great piece of software... :)

If you  have  any comments, corrections or additions, please don't hesitate to
contact Bodo  Bauer  at  [email protected].  We'll  be happy to add them to this
document.

The   latest   version    of   this   document   is    available   online   at
http://skaro.nightcrawler.com/~bb/Docs/Proc as HTML version.

If  the above  direction does  not works  for you,  ypu could  try the  kernel
mailing  list  at  [email protected]  and/or try  to  reach  me  at
[email protected].

0.2 Legal Stuff
---------------

We don't  guarantee  the  correctness  of this document, and if you come to us
complaining about  how  you  screwed  up  your  system  because  of  incorrect
documentation, we won't feel responsible...

------------------------------------------------------------------------------
CHAPTER 1: COLLECTING SYSTEM INFORMATION
------------------------------------------------------------------------------

------------------------------------------------------------------------------
In This Chapter
------------------------------------------------------------------------------
* Investigating  the  properties  of  the  pseudo  file  system  /proc and its
  ability to provide information on the running Linux system
* Examining /proc's structure
* Uncovering  various  information  about the kernel and the processes running
  on the system
------------------------------------------------------------------------------


The proc  file  system acts as an interface to internal data structures in the
kernel. It  can  be  used to obtain information about the system and to change
certain kernel parameters at runtime (sysctl).

First, we'll  take  a  look  at the read-only parts of /proc. In Chapter 2, we
show you how you can use /proc/sys to change settings.

1.1 Process-Specific Subdirectories
-----------------------------------

The directory  /proc  contains  (among other things) one subdirectory for each
process running on the system, which is named after the process ID (PID).

The link  self  points  to  the  process reading the file system. Each process
subdirectory has the entries listed in Table 1-1.


Table 1-1: Process specific entries in /proc
..............................................................................
 File  Content
 clear_refs Clears page referenced bits shown in smaps output
 cmdline Command line arguments
 cpu  Current and last cpu in which it was executed (2.4)(smp)
 cwd  Link to the current working directory
 environ Values of environment variables
 exe  Link to the executable of this process
 fd  Directory, which contains all file descriptors
 maps  Memory maps to executables and library files (2.4)
 mem  Memory held by this process
 root  Link to the root directory of this process
 stat  Process status
 statm  Process memory status information
 status  Process status in human readable form
 wchan  If CONFIG_KALLSYMS is set, a pre-decoded wchan
 stack  Report full stack trace, enable via CONFIG_STACKTRACE
 smaps  a extension based on maps, showing the memory consumption of
  each mapping
..............................................................................

For example, to get the status information of a process, all you have to do is
read the file /proc/PID/status:

  >cat /proc/self/status
  Name:   cat
  State:  R (running)
  Tgid:   5452
  Pid:    5452
  PPid:   743
  TracerPid:      0      (2.4)
  Uid:    501     501     501     501
  Gid:    100     100     100     100
  FDSize: 256
  Groups: 100 14 16
  VmPeak:     5004 kB
  VmSize:     5004 kB
  VmLck:         0 kB
  VmHWM:       476 kB
  VmRSS:       476 kB
  VmData:      156 kB
  VmStk:        88 kB
  VmExe:        68 kB
  VmLib:      1412 kB
  VmPTE:        20 kb
  VmSwap:        0 kB
  Threads:        1
  SigQ:   0/28578
  SigPnd: 0000000000000000
  ShdPnd: 0000000000000000
  SigBlk: 0000000000000000
  SigIgn: 0000000000000000
  SigCgt: 0000000000000000
  CapInh: 00000000fffffeff
  CapPrm: 0000000000000000
  CapEff: 0000000000000000
  CapBnd: ffffffffffffffff
  voluntary_ctxt_switches:        0
  nonvoluntary_ctxt_switches:     1

This shows you nearly the same information you would get if you viewed it with
the ps  command.  In  fact,  ps  uses  the  proc  file  system  to  obtain its
information.  But you get a more detailed  view of the  process by reading the
file /proc/PID/status. It fields are described in table 1-2.

The  statm  file  contains  more  detailed  information about the process
memory usage. Its seven fields are explained in Table 1-3.  The stat file
contains details information about the process itself.  Its fields are
explained in Table 1-4.

(for SMP CONFIG users)
For making accounting scalable, RSS related information are handled in
asynchronous manner and the vaule may not be very precise. To see a precise
snapshot of a moment, you can see /proc/<pid>/smaps file and scan page table.
It's slow but very precise.

Table 1-2: Contents of the status files (as of 2.6.30-rc7)
..............................................................................
 Field                       Content
 Name                        filename of the executable
 State                       state (R is running, S is sleeping, D is sleeping
                             in an uninterruptible wait, Z is zombie,
        T is traced or stopped)
 Tgid                        thread group ID
 Pid                         process id
 PPid                        process id of the parent process
 TracerPid                   PID of process tracing this process (0 if not)
 Uid                         Real, effective, saved set, and  file system UIDs
 Gid                         Real, effective, saved set, and  file system GIDs
 FDSize                      number of file descriptor slots currently allocated
 Groups                      supplementary group list
 VmPeak                      peak virtual memory size
 VmSize                      total program size
 VmLck                       locked memory size
 VmHWM                       peak resident set size ("high water mark")
 VmRSS                       size of memory portions
 VmData                      size of data, stack, and text segments
 VmStk                       size of data, stack, and text segments
 VmExe                       size of text segment
 VmLib                       size of shared library code
 VmPTE                       size of page table entries
 VmSwap                      size of swap usage (the number of referred swapents)
 Threads                     number of threads
 SigQ                        number of signals queued/max. number for queue
 SigPnd                      bitmap of pending signals for the thread
 ShdPnd                      bitmap of shared pending signals for the process
 SigBlk                      bitmap of blocked signals
 SigIgn                      bitmap of ignored signals
 SigCgt                      bitmap of catched signals
 CapInh                      bitmap of inheritable capabilities
 CapPrm                      bitmap of permitted capabilities
 CapEff                      bitmap of effective capabilities
 CapBnd                      bitmap of capabilities bounding set
 Cpus_allowed                mask of CPUs on which this process may run
 Cpus_allowed_list           Same as previous, but in "list format"
 Mems_allowed                mask of memory nodes allowed to this process
 Mems_allowed_list           Same as previous, but in "list format"
 voluntary_ctxt_switches     number of voluntary context switches
 nonvoluntary_ctxt_switches  number of non voluntary context switches
..............................................................................

Table 1-3: Contents of the statm files (as of 2.6.8-rc3)
..............................................................................
 Field    Content
 size     total program size (pages)  (same as VmSize in status)
 resident size of memory portions (pages) (same as VmRSS in status)
 shared   number of pages that are shared (i.e. backed by a file)
 trs      number of pages that are 'code' (not including libs; broken,
       includes data segment)
 lrs      number of pages of library  (always 0 on 2.6)
 drs      number of pages of data/stack  (including libs; broken,
       includes library text)
 dt       number of dirty pages   (always 0 on 2.6)
..............................................................................


Table 1-4: Contents of the stat files (as of 2.6.30-rc7)
..............................................................................
 Field          Content
  pid           process id
  tcomm         filename of the executable
  state         state (R is running, S is sleeping, D is sleeping in an
                uninterruptible wait, Z is zombie, T is traced or stopped)
  ppid          process id of the parent process
  pgrp          pgrp of the process
  sid           session id
  tty_nr        tty the process uses
  tty_pgrp      pgrp of the tty
  flags         task flags
  min_flt       number of minor faults
  cmin_flt      number of minor faults with child's
  maj_flt       number of major faults
  cmaj_flt      number of major faults with child's
  utime         user mode jiffies
  stime         kernel mode jiffies
  cutime        user mode jiffies with child's
  cstime        kernel mode jiffies with child's
  priority      priority level
  nice          nice level
  num_threads   number of threads
  it_real_value (obsolete, always 0)
  start_time    time the process started after system boot
  vsize         virtual memory size
  rss           resident set memory size
  rsslim        current limit in bytes on the rss
  start_code    address above which program text can run
  end_code      address below which program text can run
  start_stack   address of the start of the stack
  esp           current value of ESP
  eip           current value of EIP
  pending       bitmap of pending signals
  blocked       bitmap of blocked signals
  sigign        bitmap of ignored signals
  sigcatch      bitmap of catched signals
  wchan         address where process went to sleep
  0             (place holder)
  0             (place holder)
  exit_signal   signal to send to parent thread on exit
  task_cpu      which CPU the task is scheduled on
  rt_priority   realtime priority
  policy        scheduling policy (man sched_setscheduler)
  blkio_ticks   time spent waiting for block IO
  gtime         guest time of the task in jiffies
  cgtime        guest time of the task children in jiffies
..............................................................................

The /proc/PID/maps file containing the currently mapped memory regions and
their access permissions.

The format is:

address           perms offset  dev   inode      pathname

08048000-08049000 r-xp 00000000 03:00 8312       /opt/test
08049000-0804a000 rw-p 00001000 03:00 8312       /opt/test
0804a000-0806b000 rw-p 00000000 00:00 0          [heap]
a7cb1000-a7cb2000 ---p 00000000 00:00 0
a7cb2000-a7eb2000 rw-p 00000000 00:00 0
a7eb2000-a7eb3000 ---p 00000000 00:00 0
a7eb3000-a7ed5000 rw-p 00000000 00:00 0
a7ed5000-a8008000 r-xp 00000000 03:00 4222       /lib/libc.so.6
a8008000-a800a000 r--p 00133000 03:00 4222       /lib/libc.so.6
a800a000-a800b000 rw-p 00135000 03:00 4222       /lib/libc.so.6
a800b000-a800e000 rw-p 00000000 00:00 0
a800e000-a8022000 r-xp 00000000 03:00 14462      /lib/libpthread.so.0
a8022000-a8023000 r--p 00013000 03:00 14462      /lib/libpthread.so.0
a8023000-a8024000 rw-p 00014000 03:00 14462      /lib/libpthread.so.0
a8024000-a8027000 rw-p 00000000 00:00 0
a8027000-a8043000 r-xp 00000000 03:00 8317       /lib/ld-linux.so.2
a8043000-a8044000 r--p 0001b000 03:00 8317       /lib/ld-linux.so.2
a8044000-a8045000 rw-p 0001c000 03:00 8317       /lib/ld-linux.so.2
aff35000-aff4a000 rw-p 00000000 00:00 0          [stack]
ffffe000-fffff000 r-xp 00000000 00:00 0          [vdso]

where "address" is the address space in the process that it occupies, "perms"
is a set of permissions:

 r = read
 w = write
 x = execute
 s = shared
 p = private (copy on write)

"offset" is the offset into the mapping, "dev" is the device (major:minor), and
"inode" is the inode  on that device.  0 indicates that  no inode is associated
with the memory region, as the case would be with BSS (uninitialized data).
The "pathname" shows the name associated file for this mapping.  If the mapping
is not associated with a file:

 [heap]                   = the heap of the program
 [stack]                  = the stack of the main process
 [vdso]                   = the "virtual dynamic shared object",
                            the kernel system call handler

 or if empty, the mapping is anonymous.


The /proc/PID/smaps is an extension based on maps, showing the memory
consumption for each of the process's mappings. For each of mappings there
is a series of lines such as the following:

08048000-080bc000 r-xp 00000000 03:02 13130      /bin/bash
Size:               1084 kB
Rss:                 892 kB
Pss:                 374 kB
Shared_Clean:        892 kB
Shared_Dirty:          0 kB
Private_Clean:         0 kB
Private_Dirty:         0 kB
Referenced:          892 kB
Swap:                  0 kB
KernelPageSize:        4 kB
MMUPageSize:           4 kB

The first  of these lines shows  the same information  as is displayed for the
mapping in /proc/PID/maps.  The remaining lines show  the size of the mapping,
the amount of the mapping that is currently resident in RAM, the "proportional
set size” (divide each shared page by the number of processes sharing it), the
number of clean and dirty shared pages in the mapping, and the number of clean
and dirty private pages in the mapping.  The "Referenced" indicates the amount
of memory currently marked as referenced or accessed.

This file is only present if the CONFIG_MMU kernel configuration option is
enabled.

The /proc/PID/clear_refs is used to reset the PG_Referenced and ACCESSED/YOUNG
bits on both physical and virtual pages associated with a process.
To clear the bits for all the pages associated with the process
    > echo 1 > /proc/PID/clear_refs

To clear the bits for the anonymous pages associated with the process
    > echo 2 > /proc/PID/clear_refs

To clear the bits for the file mapped pages associated with the process
    > echo 3 > /proc/PID/clear_refs
Any other value written to /proc/PID/clear_refs will have no effect.


1.2 Kernel data
---------------

Similar to  the  process entries, the kernel data files give information about
the running kernel. The files used to obtain this information are contained in
/proc and  are  listed  in Table 1-5. Not all of these will be present in your
system. It  depends  on the kernel configuration and the loaded modules, which
files are there, and which are missing.

Table 1-5: Kernel info in /proc
..............................................................................
 File        Content                                          
 apm         Advanced power management info                   
 buddyinfo   Kernel memory allocator information (see text) (2.5)
 bus         Directory containing bus specific information    
 cmdline     Kernel command line                              
 cpuinfo     Info about the CPU                               
 devices     Available devices (block and character)          
 dma         Used DMS channels                                
 filesystems Supported filesystems                            
 driver      Various drivers grouped here, currently rtc (2.4)
 execdomains Execdomains, related to security   (2.4)
 fb      Frame Buffer devices    (2.4)
 fs      File system parameters, currently nfs/exports (2.4)
 ide         Directory containing info about the IDE subsystem
 interrupts  Interrupt usage                                  
 iomem      Memory map      (2.4)
 ioports     I/O port usage                                   
 irq      Masks for irq to cpu affinity   (2.4)(smp?)
 isapnp      ISA PnP (Plug&Play) Info    (2.4)
 kcore       Kernel core image (can be ELF or A.OUT(deprecated in 2.4))  
 kmsg        Kernel messages                                  
 ksyms       Kernel symbol table                              
 loadavg     Load average of last 1, 5 & 15 minutes               
 locks       Kernel locks                                     
 meminfo     Memory info                                      
 misc        Miscellaneous                                    
 modules     List of loaded modules                           
 mounts      Mounted filesystems                              
 net         Networking info (see text)                       
 pagetypeinfo Additional page allocator information (see text)  (2.5)
 partitions  Table of partitions known to the system          
 pci      Deprecated info of PCI bus (new way -> /proc/bus/pci/,
             decoupled by lspci     (2.4)
 rtc         Real time clock                                  
 scsi        SCSI info (see text)                             
 slabinfo    Slab pool info                                   
 softirqs    softirq usage
 stat        Overall statistics                               
 swaps       Swap space utilization                           
 sys         See chapter 2                                    
 sysvipc     Info of SysVIPC Resources (msg, sem, shm)  (2.4)
 tty      Info of tty drivers
 uptime      System uptime                                    
 version     Kernel version                                   
 video      bttv info of video resources   (2.4)
 vmallocinfo Show vmalloced areas
..............................................................................

You can,  for  example,  check  which interrupts are currently in use and what
they are used for by looking in the file /proc/interrupts:

  > cat /proc/interrupts
             CPU0       
    0:    8728810          XT-PIC  timer
    1:        895          XT-PIC  keyboard
    2:          0          XT-PIC  cascade
    3:     531695          XT-PIC  aha152x
    4:    2014133          XT-PIC  serial
    5:      44401          XT-PIC  pcnet_cs
    8:          2          XT-PIC  rtc
   11:          8          XT-PIC  i82365
   12:     182918          XT-PIC  PS/2 Mouse
   13:          1          XT-PIC  fpu
   14:    1232265          XT-PIC  ide0
   15:          7          XT-PIC  ide1
  NMI:          0

In 2.4.* a couple of lines where added to this file LOC & ERR (this time is the
output of a SMP machine):

  > cat /proc/interrupts

             CPU0       CPU1      
    0:    1243498    1214548    IO-APIC-edge  timer
    1:       8949       8958    IO-APIC-edge  keyboard
    2:          0          0          XT-PIC  cascade
    5:      11286      10161    IO-APIC-edge  soundblaster
    8:          1          0    IO-APIC-edge  rtc
    9:      27422      27407    IO-APIC-edge  3c503
   12:     113645     113873    IO-APIC-edge  PS/2 Mouse
   13:          0          0          XT-PIC  fpu
   14:      22491      24012    IO-APIC-edge  ide0
   15:       2183       2415    IO-APIC-edge  ide1
   17:      30564      30414   IO-APIC-level  eth0
   18:        177        164   IO-APIC-level  bttv
  NMI:    2457961    2457959
  LOC:    2457882    2457881
  ERR:       2155

NMI is incremented in this case because every timer interrupt generates a NMI
(Non Maskable Interrupt) which is used by the NMI Watchdog to detect lockups.

LOC is the local interrupt counter of the internal APIC of every CPU.

ERR is incremented in the case of errors in the IO-APIC bus (the bus that
connects the CPUs in a SMP system. This means that an error has been detected,
the IO-APIC automatically retry the transmission, so it should not be a big
problem, but you should read the SMP-FAQ.

In 2.6.2* /proc/interrupts was expanded again.  This time the goal was for
/proc/interrupts to display every IRQ vector in use by the system, not
just those considered 'most important'.  The new vectors are:

  THR -- interrupt raised when a machine check threshold counter
  (typically counting ECC corrected errors of memory or cache) exceeds
  a configurable threshold.  Only available on some systems.

  TRM -- a thermal event interrupt occurs when a temperature threshold
  has been exceeded for the CPU.  This interrupt may also be generated
  when the temperature drops back to normal.

  SPU -- a spurious interrupt is some interrupt that was raised then lowered
  by some IO device before it could be fully processed by the APIC.  Hence
  the APIC sees the interrupt but does not know what device it came from.
  For this case the APIC will generate the interrupt with a IRQ vector
  of 0xff. This might also be generated by chipset bugs.

  RES, CAL, TLB -- rescheduling, call and TLB flush interrupts are
  sent from one CPU to another per the needs of the OS.  Typically,
  their statistics are used by kernel developers and interested users to
  determine the occurrence of interrupts of the given type.

The above IRQ vectors are displayed only when relevent.  For example,
the threshold vector does not exist on x86_64 platforms.  Others are
suppressed when the system is a uniprocessor.  As of this writing, only
i386 and x86_64 platforms support the new IRQ vector displays.

Of some interest is the introduction of the /proc/irq directory to 2.4.
It could be used to set IRQ to CPU affinity, this means that you can "hook" an
IRQ to only one CPU, or to exclude a CPU of handling IRQs. The contents of the
irq subdir is one subdir for each IRQ, and two files; default_smp_affinity and
prof_cpu_mask.

For example
  > ls /proc/irq/
  0  10  12  14  16  18  2  4  6  8  prof_cpu_mask
  1  11  13  15  17  19  3  5  7  9  default_smp_affinity
  > ls /proc/irq/0/
  smp_affinity

smp_affinity is a bitmask, in which you can specify which CPUs can handle the
IRQ, you can set it by doing:

  > echo 1 > /proc/irq/10/smp_affinity

This means that only the first CPU will handle the IRQ, but you can also echo
5 which means that only the first and fourth CPU can handle the IRQ.

The contents of each smp_affinity file is the same by default:

  > cat /proc/irq/0/smp_affinity
  ffffffff

The default_smp_affinity mask applies to all non-active IRQs, which are the
IRQs which have not yet been allocated/activated, and hence which lack a
/proc/irq/[0-9]* directory.

The node file on an SMP system shows the node to which the device using the IRQ
reports itself as being attached. This hardware locality information does not
include information about any possible driver locality preference.

prof_cpu_mask specifies which CPUs are to be profiled by the system wide
profiler. Default value is ffffffff (all cpus).

The way IRQs are routed is handled by the IO-APIC, and it's Round Robin
between all the CPUs which are allowed to handle it. As usual the kernel has
more info than you and does a better job than you, so the defaults are the
best choice for almost everyone.

There are  three  more  important subdirectories in /proc: net, scsi, and sys.
The general  rule  is  that  the  contents,  or  even  the  existence of these
directories, depend  on your kernel configuration. If SCSI is not enabled, the
directory scsi  may  not  exist. The same is true with the net, which is there
only when networking support is present in the running kernel.

The slabinfo  file  gives  information  about  memory usage at the slab level.
Linux uses  slab  pools for memory management above page level in version 2.2.
Commonly used  objects  have  their  own  slab  pool (such as network buffers,
directory cache, and so on).

..............................................................................

> cat /proc/buddyinfo

Node 0, zone      DMA      0      4      5      4      4      3 ...
Node 0, zone   Normal      1      0      0      1    101      8 ...
Node 0, zone  HighMem      2      0      0      1      1      0 ...

External fragmentation is a problem under some workloads, and buddyinfo is a
useful tool for helping diagnose these problems.  Buddyinfo will give you a
clue as to how big an area you can safely allocate, or why a previous
allocation failed.

Each column represents the number of pages of a certain order which are
available.  In this case, there are 0 chunks of 2^0*PAGE_SIZE available in
ZONE_DMA, 4 chunks of 2^1*PAGE_SIZE in ZONE_DMA, 101 chunks of 2^4*PAGE_SIZE
available in ZONE_NORMAL, etc...

More information relevant to external fragmentation can be found in
pagetypeinfo.

> cat /proc/pagetypeinfo
Page block order: 9
Pages per block:  512

Free pages count per migrate type at order       0      1      2      3      4      5      6      7      8      9     10
Node    0, zone      DMA, type    Unmovable      0      0      0      1      1      1      1      1      1      1      0
Node    0, zone      DMA, type  Reclaimable      0      0      0      0      0      0      0      0      0      0      0
Node    0, zone      DMA, type      Movable      1      1      2      1      2      1      1      0      1      0      2
Node    0, zone      DMA, type      Reserve      0      0      0      0      0      0      0      0      0      1      0
Node    0, zone      DMA, type      Isolate      0      0      0      0      0      0      0      0      0      0      0
Node    0, zone    DMA32, type    Unmovable    103     54     77      1      1      1     11      8      7      1      9
Node    0, zone    DMA32, type  Reclaimable      0      0      2      1      0      0      0      0      1      0      0
Node    0, zone    DMA32, type      Movable    169    152    113     91     77     54     39     13      6      1    452
Node    0, zone    DMA32, type      Reserve      1      2      2      2      2      0      1      1      1      1      0
Node    0, zone    DMA32, type      Isolate      0      0      0      0      0      0      0      0      0      0      0

Number of blocks type     Unmovable  Reclaimable      Movable      Reserve      Isolate
Node 0, zone      DMA            2            0            5            1            0
Node 0, zone    DMA32           41            6          967            2            0

Fragmentation avoidance in the kernel works by grouping pages of different
migrate types into the same contiguous regions of memory called page blocks.
A page block is typically the size of the default hugepage size e.g. 2MB on
X86-64. By keeping pages grouped based on their ability to move, the kernel
can reclaim pages within a page block to satisfy a high-order allocation.

The pagetypinfo begins with information on the size of a page block. It
then gives the same type of information as buddyinfo except broken down
by migrate-type and finishes with details on how many page blocks of each
type exist.

If min_free_kbytes has been tuned correctly (recommendations made by hugeadm
from libhugetlbfs http://sourceforge.net/projects/libhugetlbfs/), one can
make an estimate of the likely number of huge pages that can be allocated
at a given point in time. All the "Movable" blocks should be allocatable
unless memory has been mlock()'d. Some of the Reclaimable blocks should
also be allocatable although a lot of filesystem metadata may have to be
reclaimed to achieve this.

..............................................................................

meminfo:

Provides information about distribution and utilization of memory.  This
varies by architecture and compile options.  The following is from a
16GB PIII, which has highmem enabled.  You may not have all of these fields.

> cat /proc/meminfo


MemTotal:     16344972 kB
MemFree:      13634064 kB
Buffers:          3656 kB
Cached:        1195708 kB
SwapCached:          0 kB
Active:         891636 kB
Inactive:      1077224 kB
HighTotal:    15597528 kB
HighFree:     13629632 kB
LowTotal:       747444 kB
LowFree:          4432 kB
SwapTotal:           0 kB
SwapFree:            0 kB
Dirty:             968 kB
Writeback:           0 kB
AnonPages:      861800 kB
Mapped:         280372 kB
Slab:           284364 kB
SReclaimable:   159856 kB
SUnreclaim:     124508 kB
PageTables:      24448 kB
NFS_Unstable:        0 kB
Bounce:              0 kB
WritebackTmp:        0 kB
CommitLimit:   7669796 kB
Committed_AS:   100056 kB
VmallocTotal:   112216 kB
VmallocUsed:       428 kB
VmallocChunk:   111088 kB

    MemTotal: Total usable ram (i.e. physical ram minus a few reserved
              bits and the kernel binary code)
     MemFree: The sum of LowFree+HighFree
     Buffers: Relatively temporary storage for raw disk blocks
              shouldn't get tremendously large (20MB or so)
      Cached: in-memory cache for files read from the disk (the
              pagecache).  Doesn't include SwapCached
  SwapCached: Memory that once was swapped out, is swapped back in but
              still also is in the swapfile (if memory is needed it
              doesn't need to be swapped out AGAIN because it is already
              in the swapfile. This saves I/O)
      Active: Memory that has been used more recently and usually not
              reclaimed unless absolutely necessary.
    Inactive: Memory which has been less recently used.  It is more
              eligible to be reclaimed for other purposes
   HighTotal:
    HighFree: Highmem is all memory above ~860MB of physical memory
              Highmem areas are for use by userspace programs, or
              for the pagecache.  The kernel must use tricks to access
              this memory, making it slower to access than lowmem.
    LowTotal:
     LowFree: Lowmem is memory which can be used for everything that
              highmem can be used for, but it is also available for the
              kernel's use for its own data structures.  Among many
              other things, it is where everything from the Slab is
              allocated.  Bad things happen when you're out of lowmem.
   SwapTotal: total amount of swap space available
    SwapFree: Memory which has been evicted from RAM, and is temporarily
              on the disk
       Dirty: Memory which is waiting to get written back to the disk
   Writeback: Memory which is actively being written back to the disk
   AnonPages: Non-file backed pages mapped into userspace page tables
      Mapped: files which have been mmaped, such as libraries
        Slab: in-kernel data structures cache
SReclaimable: Part of Slab, that might be reclaimed, such as caches
  SUnreclaim: Part of Slab, that cannot be reclaimed on memory pressure
  PageTables: amount of memory dedicated to the lowest level of page
              tables.
NFS_Unstable: NFS pages sent to the server, but not yet committed to stable
       storage
      Bounce: Memory used for block device "bounce buffers"
WritebackTmp: Memory used by FUSE for temporary writeback buffers
 CommitLimit: Based on the overcommit ratio ('vm.overcommit_ratio'),
              this is the total amount of  memory currently available to
              be allocated on the system. This limit is only adhered to
              if strict overcommit accounting is enabled (mode 2 in
              'vm.overcommit_memory').
              The CommitLimit is calculated with the following formula:
              CommitLimit = ('vm.overcommit_ratio' * Physical RAM) + Swap
              For example, on a system with 1G of physical RAM and 7G
              of swap with a `vm.overcommit_ratio` of 30 it would
              yield a CommitLimit of 7.3G.
              For more details, see the memory overcommit documentation
              in vm/overcommit-accounting.
Committed_AS: The amount of memory presently allocated on the system.
              The committed memory is a sum of all of the memory which
              has been allocated by processes, even if it has not been
              "used" by them as of yet. A process which malloc()'s 1G
              of memory, but only touches 300M of it will only show up
              as using 300M of memory even if it has the address space
              allocated for the entire 1G. This 1G is memory which has
              been "committed" to by the VM and can be used at any time
              by the allocating application. With strict overcommit
              enabled on the system (mode 2 in 'vm.overcommit_memory'),
              allocations which would exceed the CommitLimit (detailed
              above) will not be permitted. This is useful if one needs
              to guarantee that processes will not fail due to lack of
              memory once that memory has been successfully allocated.
VmallocTotal: total size of vmalloc memory area
 VmallocUsed: amount of vmalloc area which is used
VmallocChunk: largest contiguous block of vmalloc area which is free

..............................................................................

vmallocinfo:

Provides information about vmalloced/vmaped areas. One line per area,
containing the virtual address range of the area, size in bytes,
caller information of the creator, and optional information depending
on the kind of area :

 pages=nr    number of pages
 phys=addr   if a physical address was specified
 ioremap     I/O mapping (ioremap() and friends)
 vmalloc     vmalloc() area
 vmap        vmap()ed pages
 user        VM_USERMAP area
 vpages      buffer for pages pointers was vmalloced (huge area)
 N<node>=nr  (Only on NUMA kernels)
             Number of pages allocated on memory node <node>

> cat /proc/vmallocinfo
0xffffc20000000000-0xffffc20000201000 2101248 alloc_large_system_hash+0x204 ...
  /0x2c0 pages=512 vmalloc N0=128 N1=128 N2=128 N3=128
0xffffc20000201000-0xffffc20000302000 1052672 alloc_large_system_hash+0x204 ...
  /0x2c0 pages=256 vmalloc N0=64 N1=64 N2=64 N3=64
0xffffc20000302000-0xffffc20000304000    8192 acpi_tb_verify_table+0x21/0x4f...
  phys=7fee8000 ioremap
0xffffc20000304000-0xffffc20000307000   12288 acpi_tb_verify_table+0x21/0x4f...
  phys=7fee7000 ioremap
0xffffc2000031d000-0xffffc2000031f000    8192 init_vdso_vars+0x112/0x210
0xffffc2000031f000-0xffffc2000032b000   49152 cramfs_uncompress_init+0x2e ...
  /0x80 pages=11 vmalloc N0=3 N1=3 N2=2 N3=3
0xffffc2000033a000-0xffffc2000033d000   12288 sys_swapon+0x640/0xac0      ...
  pages=2 vmalloc N1=2
0xffffc20000347000-0xffffc2000034c000   20480 xt_alloc_table_info+0xfe ...
  /0x130 [x_tables] pages=4 vmalloc N0=4
0xffffffffa0000000-0xffffffffa000f000   61440 sys_init_module+0xc27/0x1d00 ...
   pages=14 vmalloc N2=14
0xffffffffa000f000-0xffffffffa0014000   20480 sys_init_module+0xc27/0x1d00 ...
   pages=4 vmalloc N1=4
0xffffffffa0014000-0xffffffffa0017000   12288 sys_init_module+0xc27/0x1d00 ...
   pages=2 vmalloc N1=2
0xffffffffa0017000-0xffffffffa0022000   45056 sys_init_module+0xc27/0x1d00 ...
   pages=10 vmalloc N0=10

..............................................................................

softirqs:

Provides counts of softirq handlers serviced since boot time, for each cpu.

> cat /proc/softirqs
                CPU0       CPU1       CPU2       CPU3
      HI:          0          0          0          0
   TIMER:      27166      27120      27097      27034
  NET_TX:          0          0          0         17
  NET_RX:         42          0          0         39
   BLOCK:          0          0        107       1121
 TASKLET:          0          0          0        290
   SCHED:      27035      26983      26971      26746
 HRTIMER:          0          0          0          0
     RCU:       1678       1769       2178       2250


1.3 IDE devices in /proc/ide
----------------------------

The subdirectory /proc/ide contains information about all IDE devices of which
the kernel  is  aware.  There is one subdirectory for each IDE controller, the
file drivers  and a link for each IDE device, pointing to the device directory
in the controller specific subtree.

The file  drivers  contains general information about the drivers used for the
IDE devices:

  > cat /proc/ide/drivers
  ide-cdrom version 4.53
  ide-disk version 1.08

More detailed  information  can  be  found  in  the  controller  specific
subdirectories. These  are  named  ide0,  ide1  and  so  on.  Each  of  these
directories contains the files shown in table 1-6.


Table 1-6: IDE controller info in  /proc/ide/ide?
..............................................................................
 File    Content                                
 channel IDE channel (0 or 1)                   
 config  Configuration (only for PCI/IDE bridge)
 mate    Mate name                              
 model   Type/Chipset of IDE controller         
..............................................................................

Each device  connected  to  a  controller  has  a separate subdirectory in the
controllers directory.  The  files  listed in table 1-7 are contained in these
directories.


Table 1-7: IDE device information
..............................................................................
 File             Content                                   
 cache            The cache                                 
 capacity         Capacity of the medium (in 512Byte blocks)
 driver           driver and version                        
 geometry         physical and logical geometry             
 identify         device identify block                     
 media            media type                                
 model            device identifier                         
 settings         device setup                              
 smart_thresholds IDE disk management thresholds            
 smart_values     IDE disk management values                
..............................................................................

The most  interesting  file is settings. This file contains a nice overview of
the drive parameters:

  # cat /proc/ide/ide0/hda/settings
  name                    value           min             max             mode
  ----                    -----           ---             ---             ----
  bios_cyl                526             0               65535           rw
  bios_head               255             0               255             rw
  bios_sect               63              0               63              rw
  breada_readahead        4               0               127             rw
  bswap                   0               0               1               r
  file_readahead          72              0               2097151         rw
  io_32bit                0               0               3               rw
  keepsettings            0               0               1               rw
  max_kb_per_request      122             1               127             rw
  multcount               0               0               8               rw
  nice1                   1               0               1               rw
  nowerr                  0               0               1               rw
  pio_mode                write-only      0               255             w
  slow                    0               0               1               rw
  unmaskirq               0               0               1               rw
  using_dma               0               0               1               rw


1.4 Networking info in /proc/net
--------------------------------

The subdirectory  /proc/net  follows  the  usual  pattern. Table 1-8 shows the
additional values  you  get  for  IP  version 6 if you configure the kernel to
support this. Table 1-9 lists the files and their meaning.


Table 1-8: IPv6 info in /proc/net
..............................................................................
 File       Content                                              
 udp6       UDP sockets (IPv6)                                   
 tcp6       TCP sockets (IPv6)                                   
 raw6       Raw device statistics (IPv6)                         
 igmp6      IP multicast addresses, which this host joined (IPv6)
 if_inet6   List of IPv6 interface addresses                     
 ipv6_route Kernel routing table for IPv6                        
 rt6_stats  Global IPv6 routing tables statistics                
 sockstat6  Socket statistics (IPv6)                             
 snmp6      Snmp data (IPv6)                                     
..............................................................................


Table 1-9: Network info in /proc/net
..............................................................................
 File          Content                                                        
 arp           Kernel  ARP table                                              
 dev           network devices with statistics                                
 dev_mcast     the Layer2 multicast groups a device is listening too
               (interface index, label, number of references, number of bound
               addresses).
 dev_stat      network device status                                          
 ip_fwchains   Firewall chain linkage                                         
 ip_fwnames    Firewall chain names                                           
 ip_masq       Directory containing the masquerading tables                   
 ip_masquerade Major masquerading table                                       
 netstat       Network statistics                                             
 raw           raw device statistics                                          
 route         Kernel routing table                                           
 rpc           Directory containing rpc info                                  
 rt_cache      Routing cache                                                  
 snmp          SNMP data                                                      
 sockstat      Socket statistics                                              
 tcp           TCP  sockets                                                   
 tr_rif        Token ring RIF routing table                                   
 udp           UDP sockets                                                    
 unix          UNIX domain sockets                                            
 wireless      Wireless interface data (Wavelan etc)                          
 igmp          IP multicast addresses, which this host joined                 
 psched        Global packet scheduler parameters.                            
 netlink       List of PF_NETLINK sockets                                     
 ip_mr_vifs    List of multicast virtual interfaces                           
 ip_mr_cache   List of multicast routing cache                                
..............................................................................

You can  use  this  information  to see which network devices are available in
your system and how much traffic was routed over those devices:

  > cat /proc/net/dev
  Inter-|Receive                                                   |[...
   face |bytes    packets errs drop fifo frame compressed multicast|[...
      lo:  908188   5596     0    0    0     0          0         0 [...        
    ppp0:15475140  20721   410    0    0   410          0         0 [... 
    eth0:  614530   7085     0    0    0     0          0         1 [...
  
  ...] Transmit
  ...] bytes    packets errs drop fifo colls carrier compressed
  ...]  908188     5596    0    0    0     0       0          0
  ...] 1375103    17405    0    0    0     0       0          0
  ...] 1703981     5535    0    0    0     3       0          0

In addition, each Channel Bond interface has its own directory.  For
example, the bond0 device will have a directory called /proc/net/bond0/.
It will contain information that is specific to that bond, such as the
current slaves of the bond, the link status of the slaves, and how
many times the slaves link has failed.

1.5 SCSI info
-------------

If you  have  a  SCSI  host adapter in your system, you'll find a subdirectory
named after  the driver for this adapter in /proc/scsi. You'll also see a list
of all recognized SCSI devices in /proc/scsi:

  >cat /proc/scsi/scsi
  Attached devices:
  Host: scsi0 Channel: 00 Id: 00 Lun: 00
    Vendor: IBM      Model: DGHS09U          Rev: 03E0
    Type:   Direct-Access                    ANSI SCSI revision: 03
  Host: scsi0 Channel: 00 Id: 06 Lun: 00
    Vendor: PIONEER  Model: CD-ROM DR-U06S   Rev: 1.04
    Type:   CD-ROM                           ANSI SCSI revision: 02


The directory  named  after  the driver has one file for each adapter found in
the system.  These  files  contain information about the controller, including
the used  IRQ  and  the  IO  address range. The amount of information shown is
dependent on  the adapter you use. The example shows the output for an Adaptec
AHA-2940 SCSI adapter:

  > cat /proc/scsi/aic7xxx/0
  
  Adaptec AIC7xxx driver version: 5.1.19/3.2.4
  Compile Options:
    TCQ Enabled By Default : Disabled
    AIC7XXX_PROC_STATS     : Disabled
    AIC7XXX_RESET_DELAY    : 5
  Adapter Configuration:
             SCSI Adapter: Adaptec AHA-294X Ultra SCSI host adapter
                             Ultra Wide Controller
      PCI MMAPed I/O Base: 0xeb001000
   Adapter SEEPROM Config: SEEPROM found and used.
        Adaptec SCSI BIOS: Enabled
                      IRQ: 10
                     SCBs: Active 0, Max Active 2,
                           Allocated 15, HW 16, Page 255
               Interrupts: 160328
        BIOS Control Word: 0x18b6
     Adapter Control Word: 0x005b
     Extended Translation: Enabled
  Disconnect Enable Flags: 0xffff
       Ultra Enable Flags: 0x0001
   Tag Queue Enable Flags: 0x0000
  Ordered Queue Tag Flags: 0x0000
  Default Tag Queue Depth: 8
      Tagged Queue By Device array for aic7xxx host instance 0:
        {255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255}
      Actual queue depth per device for aic7xxx host instance 0:
        {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
  Statistics:
  (scsi0:0:0:0)
    Device using Wide/Sync transfers at 40.0 MByte/sec, offset 8
    Transinfo settings: current(12/8/1/0), goal(12/8/1/0), user(12/15/1/0)
    Total transfers 160151 (74577 reads and 85574 writes)
  (scsi0:0:6:0)
    Device using Narrow/Sync transfers at 5.0 MByte/sec, offset 15
    Transinfo settings: current(50/15/0/0), goal(50/15/0/0), user(50/15/0/0)
    Total transfers 0 (0 reads and 0 writes)


1.6 Parallel port info in /proc/parport
---------------------------------------

The directory  /proc/parport  contains information about the parallel ports of
your system.  It  has  one  subdirectory  for  each port, named after the port
number (0,1,2,...).

These directories contain the four files shown in Table 1-10.


Table 1-10: Files in /proc/parport
..............................................................................
 File      Content                                                            
 autoprobe Any IEEE-1284 device ID information that has been acquired.        
 devices   list of the device drivers using that port. A + will appear by the
           name of the device currently using the port (it might not appear
           against any).
 hardware  Parallel port's base address, IRQ line and DMA channel.            
 irq       IRQ that parport is using for that port. This is in a separate
           file to allow you to alter it by writing a new value in (IRQ
           number or none).
..............................................................................

1.7 TTY info in /proc/tty
-------------------------

Information about  the  available  and actually used tty's can be found in the
directory /proc/tty.You'll  find  entries  for drivers and line disciplines in
this directory, as shown in Table 1-11.


Table 1-11: Files in /proc/tty
..............................................................................
 File          Content                                       
 drivers       list of drivers and their usage               
 ldiscs        registered line disciplines                   
 driver/serial usage statistic and status of single tty lines
..............................................................................

To see  which  tty's  are  currently in use, you can simply look into the file
/proc/tty/drivers:

  > cat /proc/tty/drivers
  pty_slave            /dev/pts      136   0-255 pty:slave
  pty_master           /dev/ptm      128   0-255 pty:master
  pty_slave            /dev/ttyp       3   0-255 pty:slave
  pty_master           /dev/pty        2   0-255 pty:master
  serial               /dev/cua        5   64-67 serial:callout
  serial               /dev/ttyS       4   64-67 serial
  /dev/tty0            /dev/tty0       4       0 system:vtmaster
  /dev/ptmx            /dev/ptmx       5       2 system
  /dev/console         /dev/console    5       1 system:console
  /dev/tty             /dev/tty        5       0 system:/dev/tty
  unknown              /dev/tty        4    1-63 console


1.8 Miscellaneous kernel statistics in /proc/stat
-------------------------------------------------

Various pieces   of  information about  kernel activity  are  available in the
/proc/stat file.  All  of  the numbers reported  in  this file are  aggregates
since the system first booted.  For a quick look, simply cat the file:

  > cat /proc/stat
  cpu  2255 34 2290 22625563 6290 127 456 0 0
  cpu0 1132 34 1441 11311718 3675 127 438 0 0
  cpu1 1123 0 849 11313845 2614 0 18 0 0
  intr 114930548 113199788 3 0 5 263 0 4 [... lots more numbers ...]
  ctxt 1990473
  btime 1062191376
  processes 2915
  procs_running 1
  procs_blocked 0
  softirq 183433 0 21755 12 39 1137 231 21459 2263

The very first  "cpu" line aggregates the  numbers in all  of the other "cpuN"
lines.  These numbers identify the amount of time the CPU has spent performing
different kinds of work.  Time units are in USER_HZ (typically hundredths of a
second).  The meanings of the columns are as follows, from left to right:

- user: normal processes executing in user mode
- nice: niced processes executing in user mode
- system: processes executing in kernel mode
- idle: twiddling thumbs
- iowait: waiting for I/O to complete
- irq: servicing interrupts
- softirq: servicing softirqs
- steal: involuntary wait
- guest: running a normal guest
- guest_nice: running a niced guest

The "intr" line gives counts of interrupts  serviced since boot time, for each
of the  possible system interrupts.   The first  column  is the  total of  all
interrupts serviced; each  subsequent column is the  total for that particular
interrupt.

The "ctxt" line gives the total number of context switches across all CPUs.

The "btime" line gives  the time at which the  system booted, in seconds since
the Unix epoch.

The "processes" line gives the number  of processes and threads created, which
includes (but  is not limited  to) those  created by  calls to the  fork() and
clone() system calls.

The "procs_running" line gives the total number of threads that are
running or ready to run (i.e., the total number of runnable threads).

The   "procs_blocked" line gives  the  number of  processes currently blocked,
waiting for I/O to complete.

The "softirq" line gives counts of softirqs serviced since boot time, for each
of the possible system softirqs. The first column is the total of all
softirqs serviced; each subsequent column is the total for that particular
softirq.


1.9 Ext4 file system parameters
------------------------------

Information about mounted ext4 file systems can be found in
/proc/fs/ext4.  Each mounted filesystem will have a directory in
/proc/fs/ext4 based on its device name (i.e., /proc/fs/ext4/hdc or
/proc/fs/ext4/dm-0).   The files in each per-device directory are shown
in Table 1-12, below.

Table 1-12: Files in /proc/fs/ext4/<devname>
..............................................................................
 File            Content                                       
 mb_groups       details of multiblock allocator buddy cache of free blocks
..............................................................................


------------------------------------------------------------------------------
Summary
------------------------------------------------------------------------------
The /proc file system serves information about the running system. It not only
allows access to process data but also allows you to request the kernel status
by reading files in the hierarchy.

The directory  structure  of /proc reflects the types of information and makes
it easy, if not obvious, where to look for specific data.
------------------------------------------------------------------------------

------------------------------------------------------------------------------
CHAPTER 2: MODIFYING SYSTEM PARAMETERS
------------------------------------------------------------------------------

------------------------------------------------------------------------------
In This Chapter
------------------------------------------------------------------------------
* Modifying kernel parameters by writing into files found in /proc/sys
* Exploring the files which modify certain parameters
* Review of the /proc/sys file tree
------------------------------------------------------------------------------


A very  interesting part of /proc is the directory /proc/sys. This is not only
a source  of  information,  it also allows you to change parameters within the
kernel. Be  very  careful  when attempting this. You can optimize your system,
but you  can  also  cause  it  to  crash.  Never  alter kernel parameters on a
production system.  Set  up  a  development machine and test to make sure that
everything works  the  way  you want it to. You may have no alternative but to
reboot the machine once an error has been made.

To change  a  value,  simply  echo  the new value into the file. An example is
given below  in the section on the file system data. You need to be root to do
this. You  can  create  your  own  boot script to perform this every time your
system boots.

The files  in /proc/sys can be used to fine tune and monitor miscellaneous and
general things  in  the operation of the Linux kernel. Since some of the files
can inadvertently  disrupt  your  system,  it  is  advisable  to  read  both
documentation and  source  before actually making adjustments. In any case, be
very careful  when  writing  to  any  of these files. The entries in /proc may
change slightly between the 2.1.* and the 2.2 kernel, so if there is any doubt
review the kernel documentation in the directory /usr/src/linux/Documentation.
This chapter  is  heavily  based  on the documentation included in the pre 2.2
kernels, and became part of it in version 2.2.1 of the Linux kernel.

Please see: Documentation/sysctls/ directory for descriptions of these
entries.

------------------------------------------------------------------------------
Summary
------------------------------------------------------------------------------
Certain aspects  of  kernel  behavior  can be modified at runtime, without the
need to  recompile  the kernel, or even to reboot the system. The files in the
/proc/sys tree  can  not only be read, but also modified. You can use the echo
command to write value into these files, thereby changing the default settings
of the kernel.
------------------------------------------------------------------------------

------------------------------------------------------------------------------
CHAPTER 3: PER-PROCESS PARAMETERS
------------------------------------------------------------------------------

3.1 /proc/<pid>/oom_adj - Adjust the oom-killer score
------------------------------------------------------

This file can be used to adjust the score used to select which processes
should be killed in an  out-of-memory  situation.  Giving it a high score will
increase the likelihood of this process being killed by the oom-killer.  Valid
values are in the range -16 to +15, plus the special value -17, which disables
oom-killing altogether for this process.

The process to be killed in an out-of-memory situation is selected among all others
based on its badness score. This value equals the original memory size of the process
and is then updated according to its CPU time (utime + stime) and the
run time (uptime - start time). The longer it runs the smaller is the score.
Badness score is divided by the square root of the CPU time and then by
the double square root of the run time.

Swapped out tasks are killed first. Half of each child's memory size is added to
the parent's score if they do not share the same memory. Thus forking servers
are the prime candidates to be killed. Having only one 'hungry' child will make
parent less preferable than the child.

/proc/<pid>/oom_score shows process' current badness score.

The following heuristics are then applied:
 * if the task was reniced, its score doubles
 * superuser or direct hardware access tasks (CAP_SYS_ADMIN, CAP_SYS_RESOURCE
  or CAP_SYS_RAWIO) have their score divided by 4
 * if oom condition happened in one cpuset and checked process does not belong
  to it, its score is divided by 8
 * the resulting score is multiplied by two to the power of oom_adj, i.e.
 points <<= oom_adj when it is positive and
 points >>= -(oom_adj) otherwise

The task with the highest badness score is then selected and its children
are killed, process itself will be killed in an OOM situation when it does
not have children or some of them disabled oom like described above.

3.2 /proc/<pid>/oom_score - Display current oom-killer score
-------------------------------------------------------------

This file can be used to check the current score used by the oom-killer is for
any given <pid>. Use it together with /proc/<pid>/oom_adj to tune which
process should be killed in an out-of-memory situation.


3.3  /proc/<pid>/io - Display the IO accounting fields
-------------------------------------------------------

This file contains IO statistics for each running process

Example
-------

test:/tmp # dd if=/dev/zero of=/tmp/test.dat &
[1] 3828

test:/tmp # cat /proc/3828/io
rchar: 323934931
wchar: 323929600
syscr: 632687
syscw: 632675
read_bytes: 0
write_bytes: 323932160
cancelled_write_bytes: 0


Description
-----------

rchar
-----

I/O counter: chars read
The number of bytes which this task has caused to be read from storage. This
is simply the sum of bytes which this process passed to read() and pread().
It includes things like tty IO and it is unaffected by whether or not actual
physical disk IO was required (the read might have been satisfied from
pagecache)


wchar
-----

I/O counter: chars written
The number of bytes which this task has caused, or shall cause to be written
to disk. Similar caveats apply here as with rchar.


syscr
-----

I/O counter: read syscalls
Attempt to count the number of read I/O operations, i.e. syscalls like read()
and pread().


syscw
-----

I/O counter: write syscalls
Attempt to count the number of write I/O operations, i.e. syscalls like
write() and pwrite().


read_bytes
----------

I/O counter: bytes read
Attempt to count the number of bytes which this process really did cause to
be fetched from the storage layer. Done at the submit_bio() level, so it is
accurate for block-backed filesystems. <please add status regarding NFS and
CIFS at a later time>


write_bytes
-----------

I/O counter: bytes written
Attempt to count the number of bytes which this process caused to be sent to
the storage layer. This is done at page-dirtying time.


cancelled_write_bytes
---------------------

The big inaccuracy here is truncate. If a process writes 1MB to a file and
then deletes the file, it will in fact perform no writeout. But it will have
been accounted as having caused 1MB of write.
In other words: The number of bytes which this process caused to not happen,
by truncating pagecache. A task can cause "negative" IO too. If this task
truncates some dirty pagecache, some IO which another task has been accounted
for (in its write_bytes) will not be happening. We _could_ just subtract that
from the truncating task's write_bytes, but there is information loss in doing
that.


Note
----

At its current implementation state, this is a bit racy on 32-bit machines: if
process A reads process B's /proc/pid/io while process B is updating one of
those 64-bit counters, process A could see an intermediate result.


More information about this can be found within the taskstats documentation in
Documentation/accounting.

3.4 /proc/<pid>/coredump_filter - Core dump filtering settings
---------------------------------------------------------------
When a process is dumped, all anonymous memory is written to a core file as
long as the size of the core file isn't limited. But sometimes we don't want
to dump some memory segments, for example, huge shared memory. Conversely,
sometimes we want to save file-backed memory segments into a core file, not
only the individual files.

/proc/<pid>/coredump_filter allows you to customize which memory segments
will be dumped when the <pid> process is dumped. coredump_filter is a bitmask
of memory types. If a bit of the bitmask is set, memory segments of the
corresponding memory type are dumped, otherwise they are not dumped.

The following 7 memory types are supported:
  - (bit 0) anonymous private memory
  - (bit 1) anonymous shared memory
  - (bit 2) file-backed private memory
  - (bit 3) file-backed shared memory
  - (bit 4) ELF header pages in file-backed private memory areas (it is
            effective only if the bit 2 is cleared)
  - (bit 5) hugetlb private memory
  - (bit 6) hugetlb shared memory

  Note that MMIO pages such as frame buffer are never dumped and vDSO pages
  are always dumped regardless of the bitmask status.

  Note bit 0-4 doesn't effect any hugetlb memory. hugetlb memory are only
  effected by bit 5-6.

Default value of coredump_filter is 0x23; this means all anonymous memory
segments and hugetlb private memory are dumped.

If you don't want to dump all shared memory segments attached to pid 1234,
write 0x21 to the process's proc file.

  $ echo 0x21 > /proc/1234/coredump_filter

When a new process is created, the process inherits the bitmask status from its
parent. It is useful to set up coredump_filter before the program runs.
For example:

  $ echo 0x7 > /proc/self/coredump_filter
  $ ./some_program

3.5 /proc/<pid>/mountinfo - Information about mounts
--------------------------------------------------------

This file contains lines of the form:

36 35 98:0 /mnt1 /mnt2 rw,noatime master:1 - ext3 /dev/root rw,errors=continue
(1)(2)(3)   (4)   (5)      (6)      (7)   (8) (9)   (10)         (11)

(1) mount ID:  unique identifier of the mount (may be reused after umount)
(2) parent ID:  ID of parent (or of self for the top of the mount tree)
(3) major:minor:  value of st_dev for files on filesystem
(4) root:  root of the mount within the filesystem
(5) mount point:  mount point relative to the process's root
(6) mount options:  per mount options
(7) optional fields:  zero or more fields of the form "tag[:value]"
(8) separator:  marks the end of the optional fields
(9) filesystem type:  name of filesystem of the form "type[.subtype]"
(10) mount source:  filesystem specific information or "none"
(11) super options:  per super block options

Parsers should ignore all unrecognised optional fields.  Currently the
possible optional fields are:

shared:X  mount is shared in peer group X
master:X  mount is slave to peer group X
propagate_from:X  mount is slave and receives propagation from peer group X (*)
unbindable  mount is unbindable

(*) X is the closest dominant peer group under the process's root.  If
X is the immediate master of the mount, or if there's no dominant peer
group under the same root, then only the "master:X" field is present
and not the "propagate_from:X" field.

For more information on mount propagation see:

  Documentation/filesystems/sharedsubtree.txt


3.6 /proc/<pid>/comm  & /proc/<pid>/task/<tid>/comm
--------------------------------------------------------
These files provide a method to access a tasks comm value. It also allows for
a task to set its own or one of its thread siblings comm value. The comm value
is limited in size compared to the cmdline value, so writing anything longer
then the kernel's TASK_COMM_LEN (currently 16 chars) will result in a truncated
comm value.

你可能感兴趣的:(proc下文件(buddyinfo/vmallocinfo...))