强连通分量模板题
/* * Tarjan 算法 * 复杂度O(m+n); */
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <cmath>
#include <ctime>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
#define INF 0x3f3f3f3f
#define inf -0x3f3f3f3f
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define mem0(a) memset(a,0,sizeof(a))
#define mem1(a) memset(a,-1,sizeof(a))
#define mem(a, b) memset(a, b, sizeof(a))
typedef long long ll;
const int maxn=500001;
const int MOD=1e9+7;
vector<int>G[maxn];
int Low[maxn],Stack[maxn],DFN[maxn],Belong[maxn];//Belong数组的值是1-scc;
int Index,top;
int a[maxn];
int scc;//强连通分量的个数
int cost[maxn];
bool Instack[maxn];
int num[maxn]; //各个强连通分量包含的点的个数,数组编号1-scc
//num数组不一定需要,结合实际情况
void Tarjan(int u){
int v;
Low[u]=DFN[u]=++Index;
Stack[top++]=u;
Instack[u]=true;
for(int i=0;i<G[u].size();i++){
v=G[u][i];
if(!DFN[v]){
Tarjan(v);
Low[u]=min(Low[u],Low[v]);
}
else if(Instack[v]&&Low[u]>DFN[v])
Low[u]=DFN[v];
}
if(Low[u]==DFN[u]){
scc++;
cost[scc]=INF;
do{
v=Stack[--top];
Instack[v]=false;
Belong[v]=scc;
if(cost[scc]==a[v]){
num[scc]++;
}
else if(cost[scc]>a[v]){
num[scc]=1;
cost[scc]=a[v];
}
}while(v!=u);
}
return ;
}
void solve(int n){
mem0(DFN);
memset(Instack,false,sizeof(Instack));
mem0(num);
Index=scc=top=0;
for(int i=1;i<=n;i++)
if(!DFN[i])
Tarjan(i);
}
void init(int n){
for(int i=1;i<=n;i++)
G[i].clear();
}
int main(){
int n,m;
while(scanf("%d",&n)!=EOF){
init(n);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
scanf("%d",&m);
int x,y;
for(int i=0;i<m;i++){
scanf("%d%d",&x,&y);
G[x].push_back(y);
}
solve(n);
ll ans1=0,ans2=1;
for(int i=1;i<=scc;i++){
ans1+=cost[i];
ans2=ans2*num[i]%MOD;
}
printf("%I64d %I64d\n",ans1,ans2);
}
return 0;
}