spark RDD的基本命令

因为传统的并行计算模型无法有效的解决迭代计算(iterative)和交互式计算(interactive);
而Spark的使命便是解决这两个问题,这也是他存在的价值和理由

一、Actions 命令

  • reduce(func)
    通过函数func聚集数据集中的所有元素。Func函数接受2个参数,返回一个值。这个函数必须是关联性的,确保可以被正确的并发执行
  • collect()
    在Driver的程序中,以数组的形式,返回数据集的所有元素。这通常会在使用filter或者其它操作后,返回一个足够小的数据子集再使用,直接将整个RDD集Collect返回,很可能会让Driver程序OOM
  • count()
    返回数据集的元素个数
  • take(n)
    返回一个数组,由数据集的前n个元素组成。注意,这个操作目前并非在多个节点上,并行执行,而是Driver程序所在机器,单机计算所有的元素(Gateway的内存压力会增大,需要谨慎使用)
  • first()
    返回数据集的第一个元素(类似于take(1)
  • saveAsTextFile(path)
    将数据集的元素,以textfile的形式,保存到本地文件系统,hdfs或者任何其它hadoop支持的文件系统。Spark将会调用每个元素的toString方法,并将它转换为文件中的一行文本
  • saveAsSequenceFile(path)
    将数据集的元素,以sequencefile的格式,保存到指定的目录下,本地系统,hdfs或者任何其它hadoop支持的文件系统。RDD的元素必须由key-value对组成,并都实现了Hadoop的Writable接口,或隐式可以转换为Writable(Spark包括了基本类型的转换,例如Int,Double,String等等)
  • foreach(func)
    在数据集的每一个元素上,运行函数func。这通常用于更新一个累加器变量,或者和外部存储系统做交互

二、Transformation 命令

  • map(func)
    返回一个新的分布式数据集,由每个原元素经过func函数转换后组成
  • filter(func)
    返回一个新的数据集,由经过func函数后返回值为true的原元素组成
  • flatMap(func)
    类似于map,但是每一个输入元素,会被映射为0到多个输出元素(因此,func函数的返回值是一个Seq,而不是单一元素)
  • sample(withReplacement, frac, seed)
    根据给定的随机种子seed,随机抽样出数量为frac的数据
  • union(otherDataset)
    返回一个新的数据集,由原数据集和参数联合而成
  • groupByKey([numTasks])
    在一个由(K,V)对组成的数据集上调用,返回一个(K,Seq[V])对的数据集。注意:默认情况下,使用8个并行任务进行分组,你可以传入numTask可选参数,根据数据量设置不同数目的Task
  • reduceByKey(func, [numTasks])
    在一个(K,V)对的数据集上使用,返回一个(K,V)对的数据集,key相同的值,都被使用指定的reduce函数聚合到一起。和groupbykey类似,任务的个数是可以通过第二个可选参数来配置的。
  • join(otherDataset, [numTasks])
    在类型为(K,V)和(K,W)类型的数据集上调用,返回一个(K,(V,W))对,每个key中的所有元素都在一起的数据集
  • groupWith(otherDataset, [numTasks])
    在类型为(K,V)和(K,W)类型的数据集上调用,返回一个数据集,组成元素为(K, Seq[V], Seq[W]) Tuples。这个操作在其它框架,称为CoGroup
  • cartesian(otherDataset)
    笛卡尔积。但在数据集T和U上调用时,返回一个(T,U)对的数据集,所有元素交互进行笛卡尔积。

你可能感兴趣的:(spark)