Catch That Cow
Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 11487 Accepted Submission(s): 3560
Problem Description
Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.
* Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.
If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Input
Line 1: Two space-separated integers: N and K
Output
Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.
Sample Input
Sample Output
4
Hint
The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.
题意:给一个农夫的坐标和奶牛的坐标 农夫可以走的路径有三种 x-1,x+1,2*x;(不过这题没说农夫的坐标一定小于奶牛的,试了一下考虑不考虑都能A)
是一道简单的搜索bfs,才做没往搜索想,一直想着暴力 还是做的题少学得算法少 不管做什么题开始总想暴力 根本想不到用什么算法 只有仔细思考才能看出来
代码:
#include<stdio.h>
#include<string.h>
#include<queue>
#define INF 100005
using namespace std;
int n,m;
int d[200005];
int bfs(int n,int m)
{
queue<int>q;
q.push(n);
d[n]=0;
while(!q.empty())
{
int p=q.front();
q.pop();
if(p==m)
{
break;
}
for(int i=0; i<3; i++)
{
int nx;
if(i==0)
{
nx=p+1;
}
if(i==1)
{
nx=p-1;
}
if(i==2)
{
nx=p*2;
}
if(nx>=0&&nx<=INF&&d[nx]==INF)
{
q.push(nx);
d[nx]=d[p]+1;
}
}
}
return d[m];
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
for(int i=0;i<=INF;i++)
{
d[i]=INF;
}
int ans= bfs(n,m);
printf("%d\n",ans);
}
}