题目链接
题意:n*k的矩阵A和一个k*n的矩阵B,C = A * B。求M = (C)^(n * n)时,矩阵M中每个元素的和(每个元素都要MOD6)
思路:因为n最大到1000,所以不能直接用矩阵快速幂求AB的n*n次幂,但是可以将公式稍微转换下,M = AB * AB...* AB = A * (BA) *... * (BA) * B,这样BA的n*n -1次幂就能用矩阵快速幂求解,之后再分别乘以A,B即可。
代码:
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int N = 1005; const int MOD = 6; struct mat{ int s[6][6]; mat() { memset(s, 0, sizeof(s)); } mat operator * (const mat& c) { mat ans; memset(ans.s, 0, sizeof(ans.s)); for (int i = 0; i < 6; i++) for (int j = 0; j < 6; j++) for (int k = 0; k < 6; k++) ans.s[i][j] = (ans.s[i][j] + s[i][k] * c.s[k][j]) % MOD; return ans; } }; int a[N][6], b[6][N], temp[N][N], sum[N][N]; int n, m; void init() { memset(a, 0, sizeof(a)); memset(b, 0, sizeof(b)); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) scanf("%d", &a[i][j]); for (int i = 0; i < m; i++) for (int j = 0; j < n; j++) scanf("%d", &b[i][j]); } mat pow_mod(mat c, int k) { if (k == 1) return c; mat a = pow_mod(c, k / 2); mat ans = a * a; if (k % 2) ans = ans * c; return ans; } int main() { while (scanf("%d%d", &n, &m)) { if (n == 0 && m == 0) break; init(); mat c; for (int i = 0; i < m; i++) for (int j = 0; j < m; j++) for (int k = 0; k < n; k++) c.s[i][j] = (c.s[i][j] + b[i][k] * a[k][j]) % MOD; int cnt = n * n - 1; mat ans = pow_mod(c, cnt); memset(temp, 0, sizeof(temp)); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) for (int k = 0; k < m; k++) temp[i][j] = (temp[i][j] + a[i][k] * ans.s[k][j]) % MOD; cnt = 0; memset(sum, 0, sizeof(sum)); for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) { for (int k = 0; k < m; k++) sum[i][j] = (sum[i][j] + temp[i][k] * b[k][j]) % MOD; cnt += sum[i][j]; } printf("%d\n", cnt); } return 0; }