NYOJ 122 Triangular Sums

Triangular Sums

时间限制: 3000 ms  |  内存限制: 65535 KB
难度: 2
描述

The nth Triangular number, T(n) = 1 + … + n, is the sum of the first n integers. It is the number of points in a triangular array with n points on side. For example T(4):

X
X X
X X X
X X X X

Write a program to compute the weighted sum of triangular numbers:

W(n) = SUM[k = 1…nk * T(k + 1)]

输入
The first line of input contains a single integer N, (1 ≤ N ≤ 1000) which is the number of datasets that follow.

Each dataset consists of a single line of input containing a single integer n, (1 ≤ n ≤300), which is the number of points on a side of the triangle.
输出
For each dataset, output on a single line the dataset number (1 through N), a blank, the value of n for the dataset, a blank, and the weighted sum ,W(n), of triangular numbers for n.
样例输入
4
3
4
5
10
样例输出
1 3 45
2 4 105
3 5 210
4 10 2145
来源
Greater New York 2006
上传者

张云聪


W(n)=1*T(2)+2*T(3)+3*T(4)+...+n*T(n+1)  ,    T(n)=1+2+3+4+...+n



#include<stdio.h>
#include<string.h>
int main(){
	int n,mark=0,i;
	scanf("%d",&n);
	while(mark++<n){
		int m,t=0,w[300];
		scanf("%d",&m);
		memset(w,0,sizeof(w));
		printf("%d %d ",mark,m);
		for(i=1;i<=(m+1);i++){
			t+=i;
			if(i>=2)
			w[i-1]=w[i-2]+(i-1)*t;
		}
		printf("%d\n",w[m]);
	}
	return 0;
}

牛人代码:(用公式)

#include<iostream>
using namespace std;
const int M=310;
int W[M];
int main()
    {
    for(int i=1;i!=M;i++)
        W[i]=W[i-1]+i*(i+1)*(i+2)/2;
    int m,n;
    cin>>n;
    for(int i=1;i<=n;i++)
    {
        cin>>m;
        cout<<i<<" "<<m<<" "<<W[m]<<endl;
    }
}



你可能感兴趣的:(NYOJ 122 Triangular Sums)