【LeetCode从零单刷】Ugly Number I, II & Super Ugly Number

I 题目:

Write a program to check whether a given number is an ugly number.

Ugly numbers are positive numbers whose prime factors only include 2, 3, 5. For example, 6, 8 are ugly while 14 is not ugly since it includes another prime factor 7.

Note that 1 is typically treated as an ugly number.

解答:

如果某个数是丑数,那么它一定可以不断被 2 或者 3 或者 5 整除,然后除以之后的结果依然满足丑数的条件

不断循环,直到这个数不再变化。此时如果是 1 则是丑数,否则不是。

class Solution {
public:
    bool isUgly(int num) {
        if(num == 1 || num == 2 || num == 3 || num == 5)    return true;
        
        int tmp = 0;
        while(tmp != num)
        {
            tmp = num;
            if(num % 2 == 0)    num = num / 2;
            if(num % 3 == 0)    num = num / 3;
            if(num % 5 == 0)    num = num / 5;
        }
        
        if(tmp == 1)
            return true;
        else
            return false;
    }
};

II 题目:

Write a program to find the n-th ugly number.

Ugly numbers are positive numbers whose prime factors only include 2, 3, 5. For example,1, 2, 3, 4, 5, 6, 8, 9, 10, 12 is the sequence of the first 10 ugly numbers.

Note that 1 is typically treated as an ugly number.

解答:

查看 hint,可以知道每个出现在序列中的数,都是前面某个数乘以系数2,3或5之后的结果

于是,记录上一次乘以2,3或5之前的那个数pos2, pos3, pos5,然后比较乘以系数之后的结果的最小值,放在这个序列。然后即时更新pos2, pos3, pos5。

这是我第一个版本的错误代码:

class Solution {
public:
    int nthUglyNumber(int n) {
        if(n <= 0)  return 0;
        int* nums = new int[n + 1]; nums[0] = 0; nums[1] = 1;
        int pos2, pos3, pos5; pos2 = pos3 = pos5 = 1;
        for(int i = 2; i <= n; i++) {
            if(nums[pos2]*2 <= nums[pos3]*3 && nums[pos2]*2 <= nums[pos5]*5) {
                nums[i] = nums[pos2]*2;
                pos2 = i;
            }
            else if(nums[pos3]*3 <= nums[pos2]*2 && nums[pos3]*3 <= nums[pos5]*5) {
                nums[i] = nums[pos3]*3;
                pos3 = i;
            }
            else {
                nums[i] = nums[pos5]*5;
                pos5 = i;
            }
        }
        return nums[n];
    }
};
这个版本的错误在于:

  1. 更新pos2, pos3, pos5。正确的思路是:每个出现在序列中的数,都是前面某个数(不一定是平方数)乘以系数2,3或5之后的结果。每次更新为 i 只能保留序列中的数是平方数。正确的做法,应该是在上一次的位置依次后移一位,表示原有位置已经取过
  2. 没有去重。会产生 1,2,3,4,5,6,6……6 = 2*3 = 3*2 重复取值;

修改之后的 AC 版本:

class Solution {
public:
    int nthUglyNumber(int n) {
        if(n <= 0)  return 0;
        int* nums = new int[n + 1]; nums[0] = 0; nums[1] = 1;
        int pos2, pos3, pos5; pos2 = pos3 = pos5 = 1;
        for(int i = 2; i <= n; i++) {
            if(nums[pos2]*2 <= nums[pos3]*3 && nums[pos2]*2 <= nums[pos5]*5) {
                nums[i] = nums[pos2]*2;
                pos2 ++;
                if(nums[i] % 3 == 0) pos3 ++;
                if(nums[i] % 5 == 0) pos5 ++;
            }
            else if(nums[pos3]*3 <= nums[pos2]*2 && nums[pos3]*3 <= nums[pos5]*5) {
                nums[i] = nums[pos3]*3;
                pos3 ++;
                if(nums[i] % 2 == 0) pos2 ++;
                if(nums[i] % 5 == 0) pos5 ++;
            }
            else {
                nums[i] = nums[pos5]*5;
                pos5 ++;
                if(nums[i] % 2 == 0) pos2 ++;
                if(nums[i] % 3 == 0) pos3 ++;
            }
        }
        return nums[n];
    }
};

Super Ugly Number

Write a program to find the nth super ugly number.

Super ugly numbers are positive numbers whose all prime factors are in the given prime listprimes of size k. For example, [1, 2, 4, 7, 8, 13, 14, 16, 19, 26, 28, 32] is the sequence of the first 12 super ugly numbers givenprimes = [2, 7, 13, 19] of size 4.

Note:
(1) 1 is a super ugly number for any given primes.
(2) The given numbers in primes are in ascending order.
(3) 0 < k ≤ 100, 0 < n ≤ 106, 0 < primes[i] < 1000.

解答:

思路与上一题相同。不过,此时优化了一下,不需要每次取整,而是更准确的判断潜在乘积而去重:

class Solution {
public:
    int nthSuperUglyNumber(int n, vector<int>& primes) {
        int k = primes.size();
        vector<int> pos(k, 0);
        vector<int> ugly(n, INT_MAX);
        ugly[0] = 1;
        
        for(int i = 1; i< n; i++)
        {
            for(int j = 0; j < k; j++)
                ugly[i] = (ugly[i] < ugly[pos[j]] * primes[j]) ? ugly[i] : (ugly[pos[j]] * primes[j]);
            
            for(int j = 0; j < k; j++)
                if(ugly[i] == ugly[pos[j]] * primes[j]) pos[j]++;
        }
        return ugly[n - 1];
    }
};

你可能感兴趣的:(LeetCode,C++,number,Ugly)