母函数能用来解决排列组合的关系,很多资料却只解释母函数的知识没和排列组合结合起来,这篇文章很好的解释了他们之间的关系,最后本人会在原创的基础上加上各类杭电ACM的试题和AC代码,以便更好的理解,本文转载的是海子大牛的文章,原文地址如下 点击打开链接
母函数与排列组合
在谈论母函数问题之前,我们先看一个简单的问题描述:假如有两组数据(A,B)和(C,D),每组中选出一个构成一个组合,总共有几种选法?很显然总共有4种选法:AC,AD,BC,BD。而且很容易联想到这个式子(A+B)*(C+D)=A*C+A*D+B*C+B*D。式子中的几个乘积项就是上面的4种选法。假如把问题换一下:每组中选出一个或0个数据构成组合,总共有几种组合?那么结果就变成:{空},A,B,C,D,AC,AD,BC,BD,而式子(1+A+B)*(1+C+D)=1+C+D+A+A*C+A*D+B+B*C+B*D,正好和上面组合的结果又一致(1代表什么都没选)。从这2个例子我们可以发现多项式乘积和组合存在着某种关系。事实上我们可以这么理解:(1+A+B)可以理解为从第一组数据中取0个数据,取A或者取B,同样(1+C+D)可以理解为从第二组数据取0个数据,取C或者取D。两者相乘的结果就表示了所有的组合。再看一下这个多项式:
(1+x)*(1+x+x2)*(1+x3)=1+2x+2x2+2x3+2x4+2x5+x6
这个多项式和上面的有一些区别了,它的幂级数超过1了。如果要从(1+x)、(1+x+x2)和(1+x3)中得到x的2次方的话,有两种选择:从(1+x)和(1+x+x2)中分别选择一个x或者从(1+x+x2)中选择x2;如果要得到x的6次方的话,只有1种选择,就是从(1+x)中选择x、(1+x+x2)中选择x2、(1+x3)中选择x3。也就是说乘积结果的每一项anxn的前面的系数an表示了从(1+x)、(1+x+x2)和(1+x3)中得到xn的组合数。
其实上面的例子就利用了母函数的思想,下面来具体讨论一下母函数。
一.什么是母函数
下面这个对于母函数的描述摘自维基百科:
在数学中,某个序列 的母函数是一种形式幂级数,其每一项的系数可以提供关于这个序列的信息。
也就是说母函数是针对某个序列的,它的外在表现形式是一种形式幂级数。比如说有这样一个序列a0,a1,......an,构造一个函数
f(x)=a0+a1x+a2x2+......+anxn
则f(x)是序列a0,a1,......an的母函数。比如说最常见的(1+x)n,它是序列C(n,0),C(n,1),C(n,2)...C(n,n)的母函数。
母函数包括几种,其中最常见的是普通型母函数和指数型母函数。普通型母函数是形如 f(x)=a0+a1x+a2x2+......+anxn的函数,而指数型母函数是形如G(x) = a0 + a1*(x)/1! + a2*(x2)/ 2! + a3*(x3)/3! + …… an*(xn)/k!的函数。
二.利用普通型母函数解决组合问题
利用母函数的思想可以解决很多组合问题,下面举例说明:
1.口袋中有白球2个,红球3个,黄球1个,从袋中摸出3个球有几种取法?
和上面描述的例子类似,我们可以用次数代表球的个数,多项式的每一项前面的系数代表取法的种树。
可以很容易地写出下面这个式子:
(1+x+x2)(1+x+x2+x3)(1+x)
(1+x+x2)表示有白球2个,1表示白球不取,x代表取1个白球,x2代表取2个白球,即用x的次数表示取球的个数,后面的也是类似。那么这个多项式的乘积就把所有的情况都表示出来了,对于最终乘积的每一项anxn,表示取n个球有an种取法。
2.有若干个1克,2克,5克的砝码,要称出20克的重量,有多少种称法?
这里不限制砝码的个数,无所谓,照样写出母函数:
(1+x+x2+x3+......xk+....)(1+x2+x4+x6......+x2n+......)(1+x5+x10+......x5m+......)
因为要称出20克,所以只需要找找到结果中次数为20 的那一项就可以得到结果。
3.同样对于正数划分也可以解决,比如有整数20,划分成1,2,5,有多少种划分方法?
解法和2的类似。
还有一类题目和这类似,有n个球放到m个盒子中,有多少种不同的放法?
(1+x+x2+x3+...xk+...)(1+x+x2+x3+...xk+...)(1+x+x2+x3+...xk+...)总共有m项,然后找出乘积中次数为n的那一项系数。
三.利用指数型母函数解决排列问题
1.口袋中有白球2个,红球3个,黄球1个,任取3个作为一个排列,总共有多少种排列?
类似地用指数型母函数解决
用(1+x/1!+x2/2!)表示取白球0个,1个或者2个
那么(1+x/1!+x2/2!)(1+x/1!+x2/2!+x3/3!)(1+x/1!)来表示所有的排列结果。
=1+3x+4x2+19x3/6+19x4/12+6x5/12+x6/12
=1+3*(x/1!)+8*(x2/2!)+19*(x3/3!)+38*(x4/4!)+60*(x5/5!)+60*(x6/6!)
找到次数为3的那一项,系数为19,那么总共有19种排列。
2.用1,2,3,4能够组成多少个5位数,要求1出现2次或者3次,2出现0次或者1次,3没有限制,4只出现偶数次。
(x2/2!+x3/3!)(1+x)(1+x/1!+x2/2!+x3/3!+.....xk/k!+....)(1+x2/2!+x4/4!+......+x2n/(2n)!+......)
每个式子的含义就不多解释了,读者应该能看懂它的含义。最终的结果就是x5/5!这一项的系数。
用代码去实现母函数的计算过程很简单,它是模拟我们人工计算多项式乘积的过程,比如有多项式H1*H2*H3......
我们先计算H1和H2的乘积,得到结果H',再用H'和H3相乘......依次类推下去,直到得到最终的结果。