One day, Peter came across a function which looks like:
Peter wants to know the number of solutions for equation F(N, X) = Y, where Y is a given number.
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains two integers N and M (2 ≤ N ≤ 105, 0 ≤ M ≤ 109).
The second line contains N integers: A1, A2, ..., AN (1 ≤ Ai ≤ 109).
The third line contains an integer Q (1 ≤ Q ≤ 105) - the number of queries. Each of the following Q lines contains an integer Yi (0 ≤ Yi ≤ 109), which means Peter wants to know the number of solutions for equation F(N, X) = Yi.
For each test cases, output an integer S = (1 ⋅ Z1 + 2 ⋅ Z2 + ... + Q ⋅ ZQ) mod (109 + 7), where Zi is the answer for the i-th query.
1 3 5 3 2 4 5 0 1 2 3 4
8
The answer for each query is: 4, 2, 0, 0, 0.
Author: LIN, XiSource: The 13th Zhejiang Provincial Collegiate Programming Contest
#include<stdio.h> #include<iostream> #include<string.h> #include<string> #include<ctype.h> #include<math.h> #include<set> #include<map> #include<vector> #include<queue> #include<bitset> #include<algorithm> #include<time.h> using namespace std; void fre() { freopen("c://test//input.in", "r", stdin); freopen("c://test//output.out", "w", stdout); } #define MS(x,y) memset(x,y,sizeof(x)) #define MC(x,y) memcpy(x,y,sizeof(x)) #define MP(x,y) make_pair(x,y) #define ls o<<1 #define rs o<<1|1 typedef long long LL; typedef unsigned long long UL; typedef unsigned int UI; template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b>a)a = b; } template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b<a)a = b; } const int N = 1e5 + 10, M = 0, Z = 1e9 + 7, ms63 = 0x3f3f3f3f; int casenum, casei; int n, m, q; map<int, int>mop; map<int, int>::iterator it; pair<int, int>a[N]; int main() { scanf("%d", &casenum); for (casei = 1; casei <= casenum; ++casei) { mop.clear(); scanf("%d%d", &n, &m); mop[m + 1] = 1; for (int i = 1; i <= n; ++i) { int x; scanf("%d", &x); while(1) { it = mop.upper_bound(x); if (it == mop.end())break; mop[x] += it->first / x * it->second; if(it->first%x)mop[it->first%x] += it->second; mop.erase(it); } } int sum = 0; for (it = mop.begin(); it != mop.end(); ++it)sum += it->second; scanf("%d", &q); for (int i = 1; i <= q; ++i)scanf("%d", &a[i].first), a[i].second = i; sort(a + 1, a + q + 1); it = mop.begin(); int ans = 0; for (int i = 1; i <= q; ++i) { while (a[i].first >= it->first) { sum -= it->second; ++it; if (it == mop.end())break; } if (it == mop.end())break; ans = (ans + (LL)sum * a[i].second) % Z; } printf("%d\n", ans); } return 0; } /* 【题意】 有n(1e5)个数字a[](1e9),我们有q(1e5)个询问。 对于每个询问,想问你——有多少个[0,m](m∈[0,1e9])范围的数,满足其mod a[1] mod a[2] mod a[3] mod ... mod a[n]== b[i] (b[]是1e9范围的数) 【类型】 暴力 复杂度分析 【分析】 这道题的关键之处,在于要想到—— 取模不仅仅是一个数可以取模,一个区间我们也可以做取模处理。 进一步我们发现,取模得到的区间左界必然都为0 一个区间[0,r)的数 mod a[i], 如果r>a[i],那么—— 这个区间会变成r/a[i]个[0,a[i])的区间,以及一个[0,r%a[i])的区间 这样,我们对于每个a[i],我们就把所有>a[i]的区间都做处理。 在所有处理都完成之后,我们可以用双指针的方式处理所有询问的答案 【时间复杂度&&优化】 O(nlognlogn) 这题的复杂度为什么是这样子呢? 对于一个数,这个数做连续若干次的取模运算, 数值变化次数不会超过logn次。 于是我们以区间做取模运算,数值变化次数不会超过nlogn次。 然后加上map的复杂度,总的复杂度不过nlognlogn,可以无压力AC之。 */