太麻烦了……
请先阅读OJ上本题的题解。
我们发现只需要维护可扩展源三角形,然后用最小表示法只有10种状态!
然后打表,flag[i,j]表示状态i变成状态j的方案数,dt1[i]和dt2[i]分别表示状态i下可选取的一级三角形和二级三角形个数,然后DP显然。
#include<cstdio>
#include<algorithm>
#define fo(i,a,b) for(i=a;i<=b;i++)
using namespace std;
typedef long long ll;
const ll mo=1000000007;
ll flag[10][10]={
{1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 },
{1 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 },
{1 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 },
{1 ,2 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 },
{1 ,2 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 },
{1 ,1 ,1 ,0 ,0 ,1 ,0 ,0 ,0 ,0 },
{1 ,0 ,2 ,0 ,0 ,0 ,1 ,0 ,0 ,0 },
{1 ,3 ,0 ,2 ,1 ,0 ,0 ,1 ,0 ,0 },
{1 ,2 ,1 ,1 ,0 ,2 ,0 ,0 ,1 ,0 },
{1 ,4 ,0 ,4 ,2 ,0 ,0 ,4 ,0 ,1 }
},dt1[10]={12,9,6,6,6,3,0,3,0,0}
,dt2[10]={4 ,2,1,1,0,0,0,0,0,0};
ll c[30][30],f[250][250][20];
ll i,j,k,l,r,t,n,m,ans;
int main(){
freopen("magic.in","r",stdin);freopen("magic.out","w",stdout);
scanf("%lld%lld",&n,&m);
f[0][0][0]=1;
f[0][1][1]=4;f[0][1][2]=4;
f[0][2][3]=4;f[0][2][4]=2;f[0][2][5]=8;f[0][2][6]=2;
f[0][3][7]=4;f[0][3][8]=4;
f[0][4][9]=1;
c[0][0]=1;
fo(i,1,14){
c[i][0]=1;
fo(j,1,i)
c[i][j]=(c[i-1][j]+c[i-1][j-1])%mo;
}
fo(i,0,n-1)
fo(j,0,m)
fo(k,0,9)
if (f[i][j][k])
fo(l,0,9)
if (flag[k][l])
fo(t,0,dt2[l])
if (j+t<=m)
fo(r,0,dt1[l]-2*t)
if (j+t+r<=m){
f[i+1][j+t+r][l]+=f[i][j][k]*flag[k][l]*c[dt2[l]][t]*c[dt1[l]-2*t][r];
f[i+1][j+t+r][l]%=mo;
}
fo(j,0,9) ans=(ans+f[n][m][j])%mo;
fo(i,1,m) ans=ans*i%mo;
printf("%lld\n",ans);
fclose(stdin);fclose(stdout);
return 0;
}