图遍历算法 ---- DFS & BFS...
public class GraphTraveler { LinkedList<Integer> open = new LinkedList<Integer>(); public void bfs(Graph g, int start) { int n = g.getVolume(); Graph tree = new Graph(n, false); boolean[] visited = new boolean[n]; Arrays.fill(visited, false); open.add(start); visited[start] = true; while (!open.isEmpty()) { int now = open.poll(); System.out.print(now + ", "); List<int[]> nexts = g.getAdjs(now); for (int[] e : nexts) { if (!visited[e[1]]) { open.add(e[1]); visited[e[1]] = true; tree.addEdge(e[0], e[1], e[2]); } } } System.out.println(tree); } public void dfs(Graph g, int start) { int n = g.getVolume(); Graph tree = new Graph(n, false); boolean[] visited = new boolean[n]; Arrays.fill(visited, false); open.add(start); visited[start] = true; while (!open.isEmpty()) { int now = open.pop(); System.out.print(now + ", "); List<int[]> nexts = g.getAdjs(now); for (int[] e : nexts) { if (!visited[e[1]]) { open.push(e[1]); visited[e[1]] = true; tree.addEdge(e[0], e[1], e[2]); } } } System.out.println(tree); } public static void main(String[] args) { GraphTraveler t = new GraphTraveler(); Graph g = new Graph(9, false); int[][] edges = {{0,1,4},{0,7,8},{1,2,8},{1,7,11}, {2,3,7},{2,5,4},{2,8,2},{3,4,9},{3,5,14}, {4,5,10},{5,6,2},{6,7,1},{6,8,6},{7,8,7}}; for (int[] e : edges) g.addEdge(e[0], e[1], e[2]); System.out.println(g); System.out.println("---- BFS ----"); t.bfs(g, 4); System.out.println("---- DFS ----"); t.dfs(g, 4); } }
最小生成树 ---- Prim & Kruskal...
public class GenericMST { public Graph prim(Graph g) { int n = g.getVolume(); Graph tree = new Graph(n, g.isDirected()); int[] cost = new int[n]; // cost[j]: min cost to tree int[] from = new int[n]; // e : (from[i], i) int[][] arcs = g.getArcs(); for (int i = 0; i < n; i++) { cost[i] = arcs[i][0]; from[i] = 0; } for (int i = 1; i < n; i++) { int min = Integer.MAX_VALUE; int k = 0; for (int j = 1; j < n; j++) if (cost[j] != -1 && cost[j] < min) { min = cost[j]; k = j; } cost[k] = -1; for (int j = 1; j < n; j++) if (arcs[k][j] < cost[j]) { cost[j] = arcs[k][j]; from[j] = k; } } for (int i = 0; i < n; i++) tree.addEdge(from[i], i, arcs[from[i]][i]); return tree; } public Graph kruskal(Graph g) { int n = g.getVolume(); Graph tree = new Graph(n, g.isDirected()); PriorityQueue<int[]> queue = new PriorityQueue<int[]>(32, new Comparator<int[]>() { public int compare(int[] e1, int[] e2) { return e1[2] - e2[2]; } }); List<int[]> edges = g.getEdges(); DisjointSet set = new DisjointSet(n); for (int[] e : edges) queue.add(e); while (!queue.isEmpty()) { int[] e = queue.poll(); if (set.find(e[0]) != set.find(e[1])) { tree.addEdge(e[0], e[1], e[2]); set.union(e[0], e[1]); } } return tree; } public static void main(String[] args) { Graph g = new Graph(9, false); /*int[][] edges = {{0,1,4},{0,7,8},{1,2,8},{1,7,11}, {2,3,7},{2,5,4},{2,8,2},{3,4,9},{3,5,14}, {4,5,10},{5,6,2},{6,7,1},{6,8,6},{7,8,7}}; for (int[] e : edges) g.addEdge(e[0], e[1], e[2]);*/ g.shuffle(); System.out.println("----- Origine -----"); System.out.println(g); GenericMST mst = new GenericMST(); System.out.println("----- Kruskal -----"); System.out.println(mst.kruskal(g)); System.out.println("----- Prim ------"); System.out.println(mst.prim(g)); } }
最短路径 ---- Dijkstra & Floyed...
public class ShortestPath { public void dijkstra(Graph g, int s) { int n = g.getVolume(); int[][] arcs = g.getArcs(); boolean[] find = new boolean[n]; int[] cost = new int[n]; ArrayList[] paths = new ArrayList[n]; for (int i = 0; i < n; i++) { find[i] = false; cost[i] = arcs[s][i]; paths[i] = new ArrayList(); } find[s] = true; cost[s] = 0; for (int i = 1; i < n; i++) { int min = Integer.MAX_VALUE; int k = -1; for (int j = 0; j < n; j++) if (!find[j] && cost[j] < min) { min = cost[j]; k = j; } find[k] = true; paths[k].add(k); for (int j = 0; j < n; j++) if (arcs[k][j] < Integer.MAX_VALUE && !find[j] && arcs[k][j] + min < cost[j]) { cost[j] = arcs[k][j] + min; paths[j] = (ArrayList) paths[k].clone(); } } for (int i = 0; i < n; i++) System.out.println(cost[i] + " -- " + paths[i]); } public void floyed(Graph g) { int n = g.getVolume(); int[][] arcs = g.getArcs(); int[][] cost = new int[n][n]; int[][] path = new int[n][n]; for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) { cost[i][j] = (i == j) ? 0 : arcs[i][j]; path[i][j] = -1; } for (int k = 0; k < n; k++) for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) if (cost[i][k] < Integer.MAX_VALUE && cost[k][j] < Integer.MAX_VALUE && cost[i][k] + cost[k][j] < cost[i][j]) { cost[i][j] = cost[i][k] + cost[k][j]; path[i][j] = k; } for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) { System.out.format("(%d,%d) %3d: %d", i, j, cost[i][j], i); showPath(path, i, j); System.out.println(); } } public void showPath(int[][] path, int i, int j) { int k = path[i][j]; if (k == -1) { System.out.print("->" + j); return; } showPath(path, i, k); showPath(path, k, j); } public static void main(String[] args) { ShortestPath sp = new ShortestPath(); Graph g = new Graph(5, true); /*int[][] edges = {{0,1,10},{0,3,5},{1,2,1},{1,3,2}, {2,4,4},{3,1,3},{3,2,9},{3,4,2},{4,0,7},{4,2,6}};*/ int[][] edges = {{0,1,3},{0,2,8},{0,4,-4},{1,3,1}, {1,4,7},{2,1,4},{3,0,2},{3,2,-5},{4,3,6}}; for (int[] e : edges) g.addEdge(e[0], e[1], e[2]); System.out.println(g); /*System.out.println("---- Dijkstra ----"); sp.dijkstra(g, 0);*/ System.out.println("---- Floyed ----"); sp.floyed(g); } }
图的表示...
public class Graph { private int n; private boolean directed; private int[][] arcs; public Graph(int n, boolean directed) { this.n = n; this.directed = directed; arcs = new int[n][n]; for (int[] arc : arcs) Arrays.fill(arc, Integer.MAX_VALUE); } public void addEdge(int from, int to, int weight) { if (from < 0 || from >= n || to < 0 || to >= n || from == to) return; if (arcs[from][to] < Integer.MAX_VALUE) return; arcs[from][to] = weight; if (!directed) arcs[to][from] = weight; } public List<int[]> getAdjs(int from) { List<int[]> adjs = new ArrayList<int[]>(); if (from >= 0 && from < n) { for (int w, to = 0; to < n; to++) if ((w = arcs[from][to]) < Integer.MAX_VALUE) adjs.add(new int[]{from, to, w}); } return adjs; } public List<int[]> getEdges() { List<int[]> edges = new ArrayList<int[]>(); for (int i = 0; i < n; i++) for (int w, j = (directed) ? 0 : i + 1; j < n; j++) if ((w = arcs[i][j]) < Integer.MAX_VALUE) edges.add(new int[]{i, j, w}); return edges; } public int getVolume() { return n; } public boolean isDirected() { return directed; } public int[][] getArcs() { return arcs; } public void shuffle() { Random r = new Random(); for (int k = 0; k < 3 * n; k++) addEdge(r.nextInt(n), r.nextInt(n), 1 + r.nextInt(20)); } public String toString() { StringBuilder buf = new StringBuilder(); for (int i = 0; i < n; i++) { buf.append(i + " -> "); for (int j = 0; j < n; j++) if (arcs[i][j] < Integer.MAX_VALUE) buf.append("(" + j + "," + arcs[i][j] + ") "); buf.append("\n"); } return buf.toString(); } }
Kruskal算法用到的并查集...
public class DisjointSet { private int[] set; public DisjointSet(int n) { set = new int[n]; for (int i = 0; i < n; i++) set[i] = -1; } public void union(int x, int y) { int r1 = find(x); int r2 = find(y); if (r1 == r2) return; if (set[r2] < set[r1]) set[r1] = r2; else { if (set[r2] == set[r1]) set[r1]--; set[r2] = r1; } } public int find(int x) { if (set[x] < 0) return x; return set[x] = find(set[x]); } }