3 3 1 2 1 1 3 2 2 3 4 1 3 2 3 2 0 100
3 ?
与1233相似。就是多了一个tally的判断。
给出AC代码:
prim算法:
#include<cstdio> #include<algorithm> #include<cstring> #include<cmath> using namespace std; const int MAX_N = 120 + 10; const int inf = 0x3f3f3f3f; long long n, m, a, b, v; long long cost[MAX_N][MAX_N]; bool used[MAX_N]; long long mincost[MAX_N]; long long prim(){ mincost[0] = 0; long long res = 0, tally = 0; while(true){ int v = -1; for(int i = 0; i < m; i++){//选出当前,价值最小的边所连接的顶点 if (!used[i] && (v == -1 || mincost[i] < mincost[v]))v = i; } if(mincost[v] == inf || v == -1)break; tally++; used[v] = true; res += mincost[v]; for(int i = 0; i < m; i++){ mincost[i] = min (mincost[i], cost[v][i]);//v所连接的边中的最小的值 } } //printf("%d\n", tally); if(tally == m)printf("%I64d\n", res); else printf("?\n"); return 0; } void inti(){ for(int i = 0; i < MAX_N; i++){ for(int j = 0; j < MAX_N; j++){ cost[i][j] = inf; } } } int main(){ while(scanf("%I64d%I64d", &n, &m) && n){ inti(); memset(used, 0, sizeof(used)); fill(mincost, mincost + MAX_N, inf); for(int i = 0; i < n; i++){ scanf("%I64d%I64d%I64d", &a, &b, &v); cost[a-1][b-1] = v; cost[b-1][a-1] = v; } prim(); //printf("%I64d\n", prim()); } return 0; }
kruskal算法
#include<cstdio> #include<cstring> #include<cmath> #include<algorithm> #include<queue> using namespace std; typedef long long ll; const ll MAX_N = 100 + 20; ll n, m, par[MAX_N + 10], rank1[MAX_N + 10]; struct edge{ ll from, to, cost; }; edge es[MAX_N * MAX_N + 10]; bool cmp(const edge &e1, const edge &e2){ return e1.cost < e2.cost; } void init(){ for(int i = 1; i <= n; i++){ par[i] = i; rank1[i] = 0; } } int find(int x){ if(par[x] == x) return x; return par[x] = find(par[x]); } void unite(int x, int y){ x = find(x); y = find(y); if(x == y)return ; if(rank1[x] > rank1[y]){ par[y] = x; } else { par[x] = y; if(rank1[x] == rank1[y])rank1[y]++; } } bool same(int a, int b){ return find(a) == find(b); } void kruskal(){ sort(es + 1, es + n + 1, cmp); init(); ll res = 0 , tally = 0; for(int i = 1; i <= n; i++){ edge e = es[i]; if(!same(e.from, e.to)){ unite(e.from, e.to); res += e.cost; tally++; } } if(tally == m-1)printf("%I64d\n", res); else printf("?\n"); } int main(){ while(scanf("%I64d%I64d", &n, &m) && n){ //f = n * (n - 1) / 2; for(int i = 1; i <= n; i++){ scanf("%I64d%I64d%I64d", &es[i].from, &es[i].to, &es[i].cost); } kruskal(); } return 0; }