- DeepSeek 面试题精选
CarlowZJ
DeepSeek
以下是针对DeepSeek面试的精选问题及解答,涵盖技术原理、模型架构、训练方法和应用场景等方面,供面试准备参考:一、DeepSeek模型架构与技术原理1.请简述DeepSeek-V3模型的总体架构和主要创新点。架构:DeepSeek-V3基于混合专家系统(MoE)架构,包含2048个领域专家模型,通过门控网络动态分配查询请求。创新点:使用多头潜在注意力(MLA)技术,通过低秩压缩降低KV缓存需求
- 工程化与框架系列(30)--前端日志系统实现
一进制ᅟᅠ
前端工程化与框架前端状态模式
前端日志系统实现引言前端日志系统是应用监控和问题诊断的重要工具。本文将深入探讨前端日志系统的设计与实现,包括日志收集、处理、存储和分析等方面,帮助开发者构建完整的前端日志解决方案。日志系统概述前端日志系统主要包括以下方面:日志收集:用户行为、性能指标、错误信息等日志处理:过滤、格式化、压缩等日志存储:本地存储、远程上传等日志分析:统计分析、可视化展示等实时监控:告警、通知等日志系统实现日志管理器/
- Python Pandas带多组参数和标签的Snowflake数据库批量数据导出程序
weixin_30777913
pandaspython云计算数据仓库
设计一个基于多个带标签的SnowflakeSQL模板作为配置文件和多组参数的PythonPandas代码程序,实现根据不同的输入参数自动批量地将Snowflake数据库中的数据导出为CSV文件到指定目录上,然后逐个文件压缩为zip文件,标签和多个参数(以“_”分割)为组成导出数据文件名,文件已经存在则覆盖原始文件。需要考虑SQL结果集是大数据量分批数据导出的情况,通过多线程和异步操作来提高程序性能
- 图片加载框架Glide与Picasso原理剖析
Ya-Jun
glideandroid
图片加载框架Glide与Picasso原理剖析一、前言图片加载是Android应用开发中的一个重要环节,良好的图片加载机制可以提升应用性能和用户体验。Glide和Picasso是目前最流行的两个图片加载框架,本文将深入分析这两个框架的核心原理和实现机制。二、图片加载基础2.1图片加载的挑战内存管理OOM(OutOfMemory)问题内存缓存策略图片复用性能优化异步加载图片压缩缓存机制用户体验加载占
- Stable Diffusion/DALL-E 3图像生成优化策略
云端源想
stablediffusion
StableDiffusion的最新版本或社区开发的插件,可以补充这些信息以保持内容的时效性。云端源想1.硬件与部署优化(进阶)显存压缩技术使用--medvram或--lowvram启动参数(StableDiffusionWebUI),通过分层加载模型降低显存占用(适合6GB以下显卡)。分块推理(TiledDiffusion):将图像分割为512×512区块,逐块生成后无缝拼接,支持4096×40
- 面试基础---面试刷题推荐 动态规划算法:背包问题与最长公共子序列
WeiLai1112
leetcode刷题算法面试动态规划java分布式
动态规划算法:背包问题与最长公共子序列引言:动态规划的核心思想动态规划(DynamicProgramming,DP)是一种解决复杂问题的算法思想,通过将问题分解为子问题,并保存子问题的解,避免重复计算,从而提高效率。本文将详细讲解动态规划在背包问题和最长公共子序列中的应用,并提供易于记忆的代码模板。一、背包问题1.1问题描述给定n个物品,每个物品有一个重量w[i]和一个价值v[i]。现在有一个容量
- Vim忍者速成秘卷:让你的键盘冒出残影の奥义
ivwdcwso
操作系统与云原生vim编辑器程序员忍道终端美学效率革命linux
核心原理通过超低延迟配置+肌肉记忆优化+视觉欺骗技术,达成行云流水的操作体验。就像《火影忍者》结印般流畅!⚡残影生成术(基础篇)"️贴地飞行模式(.vimrc极速配置)settimeoutlen=300"快捷键响应时间压缩至300ms(武士刀级响应)setttyfast"激活终端极速传输模式setlazyredraw"执行宏时暂停界面刷新(性能提升50%)"手里剑光标追踪术autocmdCurso
- 【LeetCode Python实现】300. 最长递增子序列(中等)动态规划
不太灵光的程序员
LeetCodePython实现leetcodePython机试华为
文章目录题目描述示例1:示例2:示例3:提示:参考代码题目描述给你一个整数数组nums,找到其中最长严格递增子序列的长度。子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7]是数组[0,3,1,6,2,2,7]的子序列。示例1:输入:nums=[10,9,2,5,3,
- 笔记:代码随想录算法训练营第35天: 01背包问题 二维、 01背包问题 一维 、LeetCode416. 分割等和子集
jingjingjing1111
算法leetcode数据结构动态规划笔记
学习资料:代码随想录这一块儿学得挺痛苦注:文中含大模型生成内容动态规划:01背包理论基础卡码网第46题思路:五部曲定义:dp[i][j]为第i个物品背包容量为j,能装下的最大价值递推公式:dp[i][j]的值等于dp[i-1][j]的值和dp[i-1][j-weight[i]]+value相比的最大值,后者为看放下当前物品+减去当前物品的容量能放下什么价值,当然,要是放不下当前物品,就算了,保持原
- 如何使用logrotete定时切割mysql的慢日志
从不删库的DBA
Mysqlmysql数据库
背景:在Linux系统中,logrotate是常用的日志文件管理工具,可以配置它来对MySQL的慢查询日志进行轮转,例如按照每天或者每周进行轮转,将旧的日志文件备份压缩并重新生成新的日志文件来继续记录!创建配置文件创建一个专门用于配置MySQL慢查询日志切割规则的文件,通常放在/etc/logrotate.d/目录下。假设你的MySQL慢查询日志文件名为/var/lib/mysql/[主机名]-s
- 11B模型拿下开源视频生成新SOTA!仅用224张GPU训练,训练成本省10倍
量子位
关注前沿科技量子位224张GPU,训出开源视频生成新SOTA!Open-Sora2.0正式发布。11B参数规模,性能可直追HunyuanVideo和Step-Video(30B)。要知道,市面上诸多效果相近的闭源视频生成模型,动辄花费数百万美元训练成本。而Open-Sora2.0,将这一数字压缩到了20万美元。同时,此次发布全面开源模型权重、推理代码及分布式训练全流程,开发者们可以看过来!GitH
- flask网站部署到服务器教程
鹊起244
flask服务器python
flask网站部署到服务器教程第一步:将本地文件压缩上传至服务器进入到项目所在目录,cmd使用下列指令scp/filenameusername@servername:/path示例第二步,使用ssh登录,解压缩上传到服务器的文件使用下列指令unzipfilename第三步如没有改动端口或其他,直接cd进入项目文件夹,运行项目使用下列指令来运行python3app.py运行成功后,可以通过相应域名访
- 智能车辆控制技术:MPC与轨迹规划实战项目
柚木i
本文还有配套的精品资源,点击获取简介:本压缩包集合了车辆转向控制与轨迹规划的MATLAB代码,包含模型预测控制(MPC)策略、MPT工具箱应用、车辆动力学模型构建、轨迹规划实现、mp-QP算法应用及MATLAB编程实践。旨在通过源码分析,提供智能车辆控制技术的深入学习与研究平台,涉及横向和纵向运动控制、系统模型的定义、控制策略的制定及仿真流程。1.模型预测控制(MPC)基础与应用模型预测控制(MP
- C盘清理技巧分享:释放空间,提升电脑性能
Hey! Hey!
电脑
目录1.引言2.C盘空间不足的影响3.C盘清理的必要性4.C盘清理的具体技巧4.1删除临时文件4.2清理系统还原点4.3卸载不必要的程序4.4清理下载文件夹4.5移动大文件到其他盘4.6清理系统缓存4.7使用磁盘清理工具4.8清理Windows更新文件4.9禁用休眠功能4.10清理回收站4.11压缩旧文件4.12清理浏览器缓存4.13清理日志文件4.14清理系统日志4.15使用第三方清理工具5.C
- PyTorch深度学习框架60天进阶学习计划 - 第18天:模型压缩技术
凡人的AI工具箱
深度学习pytorch学习python人工智能
PyTorch深度学习框架60天进阶学习计划-第18天:模型压缩技术目录模型压缩技术概述知识蒸馏详解软标签生成策略KL散度损失推导温度参数调节结构化剪枝技术通道剪枝评估准则L1-norm剪枝算法APoZ剪枝算法量化训练基础量化类型与精度PyTorch量化API剪枝与量化协同优化Torch.fx动态计算图修改自动化模型压缩流程实现实战案例:ResNet模型压缩性能评估与分析进阶挑战与思考1.模型压缩
- 数据恢复软件 Glarysoft File Recovery Pro v1.27 中文注册版
友善的猴子
windows电脑
GlarysoftFileRecoveryPro是一款操作简单但功能强大的Windows数据恢复工具。无论你是意外删除了重要文件,还是由于病毒攻击导致数据丢失,这款软件都能帮你快速、轻松地找回丢失的数据。凭借卓越的数据恢复能力和灵活的选项,GlarysoftFileRecoveryPro为用户提供了高效且安全的数据恢复解决方案。该版本已注册,可以使用全部功能。操作说明:1、将压缩文件解压到固定位置
- 分布式存储学习——HBase表结构设计
Future_yzx
oracle数据库
目录1.4.1模式创建1.4.2Rowkey设计1.4.3列族定义1.4.3.1可配置的数据块大小1.4.3.2数据块缓存1.4.3.3布隆过滤器1.4.3.4数据压缩1.4.3.5单元时间版本1.4.3.6生存时间1.4.4模式设计实例1.4.4.1实例1:动物分类1.4.4.2实例2:店铺与商品1.4.4.3实例3:网上商城用户消费记录1.4.4.4实例4:微博用户与粉丝1.4.4.5小结本文
- 代码随想录训练营算法第三十四天|动态规划|62.不同路径、63. 不同路径 II、343. 整数拆分、96.不同的二叉搜索树。
weixin_64181248
算法
62.不同路径62.不同路径-力扣(LeetCode)代码随想录还是不太熟悉怎么递推,用dp[i][j]代表走到第i行j列有多少路线,而i行j列可以通过[i-1][j]和[i][j-1]分别走一步得到。classSolution{public:intuniquePaths(intm,intn){vector>dp(m+1,vector(n+1,0));for(inti=1;i>&obstacleG
- C++实现哈夫曼编码的技术详解
金外飞176
算法c++开发语言
C++实现哈夫曼编码的技术详解哈夫曼编码(HuffmanCoding)是一种基于字符出现频率的无损数据压缩算法,由DavidA.Huffman在1952年提出。它通过构建最优二叉树(哈夫曼树)为字符分配变长编码,使得高频字符使用较短的编码,低频字符使用较长的编码,从而实现数据的高效压缩。本文将详细介绍哈夫曼编码的原理,并通过C++代码实现其核心功能。1.哈夫曼编码的基本原理哈夫曼编码的核心思想是贪
- Dockerfile Add和Copy的区别。
LeonNo11
docker前端
在Dockerfile中,ADD和COPY都用于将文件或目录从构建上下文(通常是Dockerfile所在的目录)复制到Docker镜像中,但它们有一些关键区别:1.COPY指令COPY主要用于复制本地文件或目录到容器的指定路径。语法COPY特性✅仅支持复制本地文件或目录(不能从远程URL复制)。✅不会自动解压.tar压缩包(需要手动RUNtar-xvf)。✅适用于简单的文件复制操作。示例COPYi
- Linux zgrep 命令使用详解
linux
简介zgrep用于在压缩(.gz)文件中搜索模式,就像grep在常规文本文件中所做的那样。它的工作原理是将文件临时解压到内存中,搜索模式并显示匹配的行。基础语法zgrep[OPTIONS]PATTERNFILE.gz或gzip-dcFILE.gz|grep[OPTIONS]PATTERN示例用法在.gz文件中搜索字符串zgrep"error"logfile.gz或gzip-dclogfile.gz
- 动态规划详解(方格拿金币最大)【C语言】-第一篇
fuill
算法详解算法c语言动态规划
我们先来看看题目吧有一个NxN的方格,每一个格子都有一些金币,只要站在格子里就能拿到里面的金币。你站在最左上角的格子里,每次可以从一个格子走到它右边或下边的格子里。请问如何走才能拿到最多的金币。输入格式第一行输入一个正整数n。以下n行描述该方格。金币数保证是不超过1000的正整数。输出格式最多能拿金币数量。样例输入3133222312样例输出11数据规模和约定nintt[1000][1000];i
- 数据结构----数组与广义表专题
落春只在无意间
#数据结构数据结构线性代数算法
数组与广义表专题数组的顺序表示和实现前言数组中任意一个元素存储地址的计算一维数组二维数组更一般的二维数组矩阵的压缩存储前言对称矩阵三角矩阵前言上三角对应关系下三角关系三对角矩阵下标对应关系稀疏矩阵前言稀疏矩阵的三元组表示用三元组表示矩阵的转置优化快速转置数组的顺序表示和实现前言在计算机中,内存储器的结构是一维的。用一维的内存来表示多维数组,就必须按照某种次序将数组元素排成一个线性序列。数组中任意一
- Java线程池如何合理设置核心线程数
寻烟的衣袖
多线程linuxjava服务器
问题:线程池数量设置为多少比较合理呢?线程数的设置的最主要的目的是为了充分并合理地使用CPU和内存等资源,从而最大限度地提高程序的性能,先判断是CPU密集型任务还是IO密集型任务:CPU密集型任务和IO密集型任务:比如像加解密,压缩、计算等一系列需要大量耗费CPU资源的任务,大部分场景下都是纯CPU计算。IO密集型任务:比如像MySQL数据库、文件的读写、网络通信等任务,这类任务不会特别消耗CPU
- 人工智能 - TensorRT与DeepDP终极指南:释放GPU潜能的深度学习推理优化之道
天机️灵韵
具身智能VLA人工智能人工智能算法深度学习pytorch
TensorRTTensorRT(TensorRuntime)是英伟达(NVIDIA)推出的高性能深度学习推理(Inference)优化器和运行时库,专为在NVIDIAGPU上高效部署深度学习模型而设计。它通过模型压缩、计算图优化、硬件级加速等技术,显著提升推理速度并降低资源消耗,广泛应用于自动驾驶、工业检测、实时视频分析等对延迟敏感的领域。一、TensorRT的核心功能模型优化与加速层融合(La
- NodeJs中npm国内慢的问题解决
夏木炎
npm前端node.js
方法一:更改npm配置文件:$npmconfigsetregistryhttp://registry.npm.taobao.orgURL即为需要设置的镜像站点地址,如淘宝镜像:http://registry.npm.taobao.org方法二:你可以使用淘宝NPM镜像定制的cnpm(gzip压缩支持)命令行工具代替默认的npm:$npminstall-gcnpm--registry=https:/
- Linux CentOS7 环境下安装 MongoDB
2401_85112412
作者\/linuxmongodb运维
3.1将下载好的安装包上传到Linux服务器某个目录下,并使用以下命令解压压缩包。tar-zxvfmongodb-linux-x86_64-rhel70-4.0.27.tgz3.2将解压后的目录移动到/usr/local目录下,并改名为mongodb。mvmongodb-linux-x86_64-rhel70-4.0.27/usr/local/mongodb3.3进入mongodb目录,并创建文件
- OpenCV-Python 光流
LeonDL168
Opencv-Pythonopencvpython人工智能
40.1光流由于目标对象或者摄像机的移动造成的图像对象在连续两帧图像中的移动被称为光流。它是一个2D向量场,可以用来显示一个点从第一帧图像到第二帧图像之间的移动。如下图所示(ImageCourtesy:WikipediaarticleonOpticalFlow):OpticalFlow上图显示了一个点在连续的五帧图像间的移动。箭头表示光流场向量。光流在很多领域中都很有用:•由运动重建结构•视频压缩
- 【gopher的java学习笔记】如何通过jar命令解压JAR包
ThisIsClark
gopher的java学习笔记java学习笔记
如何通过jar命令解压JAR包JAR(JavaARchive)文件是Java平台上用于打包和分发类文件、资源文件以及其他相关文件的压缩文件格式。有时候,我们可能需要解压一个JAR文件以查看或修改其中的内容。Java提供了一个内置的jar工具,可以方便地进行JAR文件的创建、查看和解压等操作。本文将详细介绍如何通过jar命令解压JAR包。一、准备工作确保Java环境已安装:jar命令是Java开发工
- Windows HD Video Converter Factory PRO-v27.9.0-
私人珍藏库
winConverterFactoryVideo
WindowsHDVideoConverterFactoryPRO链接:https://pan.xunlei.com/s/VOL9TaiuS7rXbu-1kEDndoceA1?pwd=7qch#支持300多种视频格式转换,在保留视频质量的同时,压缩率可达80%,转换速度可达50X速率!支持画面剪切、片段剪辑、片段合并、特效添加、铃声制作、声音调整、FTP上传、字幕编辑等。﹂独特的HD视频编码技术和
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><