设有i,j,满足a[i]|a[j]且a[j]/a[i]为质数,那么显然可以在i和j之间连一条费用为c[i]*c[j]流量为inf的边。然后所有点向S或T连费用为0流量b[i]的边。
注意满足上述条件的(i,j)需要质因数的个数(含重复)相差1,因此上图是一个基于质因数个数奇偶性的二分图。因此直接跑费用流即可。
AC代码如下:
#include<iostream> #include<cstdio> #include<cstring> #include<set> #include<algorithm> #include<cmath> #include<cstdlib> #define inf 1000000000 #define N 20005 #define M 100005 #define ll long long using namespace std; int n,m,tot=1,gol,cnt,fst[N],pnt[M],len[M],nxt[M],p[M],h[M+5]; int a[N],b[N],c[N],blg[N],fa[N]; ll now,d[N],cst[M]; bool bo[M]; void add(int x,int y,int z,ll w){ pnt[++tot]=y; len[tot]=z; cst[tot]=w; nxt[tot]=fst[x]; fst[x]=tot; } void ins(int x,int y,int z,ll w){ add(x,y,z,w); add(y,x,0,-w); } void pfs(){ int i,j; memset(bo,1,sizeof(bo)); for (i=2; i<=32000; i++){ if (bo[i]) p[++cnt]=i; for (j=1; j<=cnt && i*p[j]<=32000; j++){ bo[i*p[j]]=0; if (!(i%p[j])) break; } } } int calc(int x){ int t=0,i; for (i=1; i<=cnt && x>1; i++) if (!(x%p[i])) for (; !(x%p[i]); x/=p[i]) t++; if (x>1) t++; return t; } bool spfa(){ int i,head=0,tail=1; h[1]=0; for (i=1; i<=gol; i++) d[i]=-((ll)inf*inf); memset(bo,1,sizeof(bo[0])*(gol+1)); while (head!=tail){ head=head%M+1; int x=h[head],p; bo[x]=1; for (p=fst[x]; p; p=nxt[p]) if (len[p]){ int y=pnt[p]; if (d[x]+cst[p]>d[y]){ d[y]=d[x]+cst[p]; fa[y]=p; if (bo[y]){ bo[y]=0; tail=tail%M+1; h[tail]=y; } } } } return d[gol]>-((ll)inf*inf); } int update(){ int tmp=inf,i; for (i=gol; i; i=pnt[fa[i]^1]) tmp=min(tmp,len[fa[i]]); if (now+(ll)tmp*d[gol]<0) tmp=now/(-d[gol]); for (i=gol; i; i=pnt[fa[i]^1]){ len[fa[i]]-=tmp; len[fa[i]^1]+=tmp; } now+=(ll)tmp*d[gol]; return tmp; } int main(){ scanf("%d",&n); int i,j; pfs(); for (i=1; i<=n; i++) scanf("%d",&a[i]); for (i=1; i<=n; i++) scanf("%d",&b[i]); for (i=1; i<=n; i++) scanf("%d",&c[i]); gol=n+1; for (i=1; i<=n; i++){ blg[i]=calc(a[i])&1; if (blg[i]) ins(0,i,b[i],0); else ins(i,gol,b[i],0); } for (i=1; i<=n; i++) for (j=1; j<=n; j++) if (!(a[i]%a[j]) && calc(a[i]/a[j])==1){ if (blg[i]) ins(i,j,inf,(ll)c[i]*c[j]); else ins(j,i,inf,(ll)c[i]*c[j]); } int ans=0,flow; while (spfa()){ flow=update(); if (!flow) break; ans+=flow; } printf("%d\n",ans); return 0; }
by lych
2016.4.21