Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1306 Accepted Submission(s): 741
Problem Description
Every ALPC has his own alpc-number just like alpc12, alpc55, alpc62 etc.
As more and more fresh man join us. How to number them? And how to avoid their alpc-number conflicted?
Of course, we can number them one by one, but that’s too bored! So ALPCs use another method called Fibonacci Check-up in spite of collision.
First you should multiply all digit of your studying number to get a number n (maybe huge).
Then use Fibonacci Check-up!
Fibonacci sequence is well-known to everyone. People define Fibonacci sequence as follows: F(0) = 0, F(1) = 1. F(n) = F(n-1) + F(n-2), n>=2. It’s easy for us to calculate F(n) mod m.
But in this method we make the problem has more challenge. We calculate the formula , is the combination number. The answer mod m (the total number of alpc team members) is just your alpc-number.
Input
First line is the testcase T.
Following T lines, each line is two integers n, m ( 0<= n <= 10^9, 1 <= m <= 30000 )
Output
Output the alpc-number.
Sample Input
2
1 30000
2 30000
Sample Output
1
3
Source
2009 Multi-University Training Contest 5 - Host by NUDT
对于这样一个公式:
一开始真的很没有头绪,对于这样一个组合公式,拆分再组合,组合再拆分,做了很长一段时间都没有结果,后来干脆暴力打表找规律,然后写了一发暴力的代码,打了0-10的表,其内容是这样的:
0 1 3 8 21 55 144 377 987 2584 6765
然后就开始找规律,找啊找啊找规律。发现8是从3*3-1来的,21是从8*3-3来的,55是从21*3-8来的,一瞬间整个人都好了起来,然后写递推式子,写了一发矩阵快速幂,开开心心的发现WA到死。。。。。其实不难发现为何会wa,数据是成几何倍数增加的,我这样里边的矩阵乘法会让一个数据彻底炸掉。后来修改了修改代码,无果,放弃。换个思路。
后来再发现,1 3 8 21 55这些个数也都是斐波那契数啊,而且Sn=F2*n,比如S3=8=F6............然后再敲,1A。
构建矩阵是要这样构建的:
剩下的就是代码实现了:
#include<stdio.h> #include<iostream> #include<string.h> using namespace std; #define ll long long int ll n,mod; typedef struct Matrix { ll mat[2][2]; }matrix; matrix A,B; Matrix matrix_mul(matrix a,matrix b) { matrix c; memset(c.mat,0,sizeof(c.mat)); int i,j,k; for(int i=0;i<2;i++) { for(int j=0;j<2;j++) { for(int k=0;k<2;k++) { c.mat[i][j]+=a.mat[i][k]*b.mat[k][j]; c.mat[i][j]%=mod; } } } return c; } Matrix matrix_quick_power(matrix a,ll k)//矩阵快速幂0.0 { matrix b; memset(b.mat,0,sizeof(b.mat)); for(int i=0;i<2;i++) b.mat[i][i]=1;//单位矩阵b while(k) { if(k%2==1) { b=matrix_mul(a,b); k-=1; } else { a=matrix_mul(a,a); k/=2; } } return b; } int main() { int t; scanf("%d",&t); while(t--) { scanf("%I64d%I64d",&n,&mod); A.mat[0][0]=1;A.mat[0][1]=1;//我们通过推论得到的矩阵A A.mat[1][0]=1;A.mat[1][1]=0; B=matrix_quick_power(A,n*2); cout<<B.mat[0][1]<<endl; } }