ROS 位置反馈控制机器人

ROS 位置反馈控制机器人

上一篇中我们学习了如何发布Twist消息控制机器人运动特定距离,但是上一篇用的是基于延时的开环控制,并没有引入反馈,在实际情况中几乎不可能准确到达目标点。所以这一篇我们学习如何用位置反馈闭环控制机器人。

  • 启动机器人
  • 从终端发布Twist消息控制机器人
  • 下一步

1.启动机器人

ROS中提供了了一个Odometry消息类型可以得到机器人的位置信息。先看一下该消息的具体内容

 rosmsg show nav_msgs/Odometry

可以看出Odometry中包含pose:三轴位置信息,三轴欧拉角(用四元数表示),Twist:三轴线速度,三轴角速度。这两个消息中都包含了与测量不确定度有关的方差信息,可以很方便地用来卡尔曼滤波。
先启动机器人:

roslaunch rbx1_bringup fake_turtlebot.launch
rosrun rviz rviz -d `rospack find rbx1_nav`/sim.rviz

然后启动odom_out_and_back.py:

rosrun rbx1_nav odom_out_and_back.py

结果如下:

和开环效果是一样的,因为这里是模拟的理想情况。

2.源码分析

import rospy
from geometry_msgs.msg import Twist, Point, Quaternion
import tf
from rbx1_nav.transform_utils import quat_to_angle, normalize_angle
from math import radians, copysign, sqrt, pow, pi

class OutAndBack():
    def __init__(self):
        # Give the node a name
        rospy.init_node('out_and_back', anonymous=False)

        # Set rospy to execute a shutdown function when exiting 
        rospy.on_shutdown(self.shutdown)

        # Publisher to control the robot's speed
        self.cmd_vel = rospy.Publisher('/cmd_vel', Twist, queue_size=5)

        # How fast will we update the robot's movement?
        rate = 20

        # Set the equivalent ROS rate variable
        r = rospy.Rate(rate)

        # Set the forward linear speed to 0.2 meters per second 
        linear_speed = 0.2

        # Set the travel distance in meters
        goal_distance = 1.0

        # Set the rotation speed in radians per second
        angular_speed = 1.0
                # Set the angular tolerance in degrees converted to radians
        angular_tolerance = radians(2.5)

        # Set the rotation angle to Pi radians (180 degrees)
        goal_angle = pi

        # Initialize the tf listener
        self.tf_listener = tf.TransformListener()

        # Give tf some time to fill its buffer
        rospy.sleep(2)

        # Set the odom frame
        self.odom_frame = '/odom'

        # Find out if the robot uses /base_link or /base_footprint
        try:
            self.tf_listener.waitForTransform(self.odom_frame, '/base_footprint', rospy.Time(), rospy.Duration(1.0))
            self.base_frame = '/base_footprint'
        except (tf.Exception, tf.ConnectivityException, tf.LookupException):
            try:
                self.tf_listener.waitForTransform(self.odom_frame, '/base_link', rospy.Time(), rospy.Duration(1.0))
                self.base_frame = '/base_link'
            except (tf.Exception, tf.ConnectivityException, tf.LookupException):
                rospy.loginfo("Cannot find transform between /odom and /base_link or /base_footprint")
                rospy.signal_shutdown("tf Exception")  

        # Initialize the position variable as a Point type
        position = Point()

        # Loop once for each leg of the trip
        for i in range(2):
            # Initialize the movement command
            move_cmd = Twist()
            # Set the movement command to forward motion
            move_cmd.linear.x = linear_speed

            # Get the starting position values 
            (position, rotation) = self.get_odom()

            x_start = position.x
            y_start = position.y

            # Keep track of the distance traveled
            distance = 0

            # Enter the loop to move along a side
            while distance < goal_distance and not rospy.is_shutdown():
                # Publish the Twist message and sleep 1 cycle 
                self.cmd_vel.publish(move_cmd)

                r.sleep()

                # Get the current position
                (position, rotation) = self.get_odom()

                # Compute the Euclidean distance from the start
                distance = sqrt(pow((position.x - x_start), 2) + 
                                pow((position.y - y_start), 2))

            # Stop the robot before the rotation
            move_cmd = Twist()
            self.cmd_vel.publish(move_cmd)
            rospy.sleep(1)

            # Set the movement command to a rotation
            move_cmd.angular.z = angular_speed

            # Track the last angle measured
            last_angle = rotation

            # Track how far we have turned
            turn_angle = 0
            while abs(turn_angle + angular_tolerance) < abs(goal_angle) and not rospy.is_shutdown():
                # Publish the Twist message and sleep 1 cycle 
                self.cmd_vel.publish(move_cmd)
                r.sleep()

                # Get the current rotation
                (position, rotation) = self.get_odom()

                # Compute the amount of rotation since the last loop
                delta_angle = normalize_angle(rotation - last_angle)

                # Add to the running total
                turn_angle += delta_angle
                last_angle = rotation

            # Stop the robot before the next leg
            move_cmd = Twist()
            self.cmd_vel.publish(move_cmd)
            rospy.sleep(1)

        # Stop the robot for good
        self.cmd_vel.publish(Twist())

    def get_odom(self):
        # Get the current transform between the odom and base frames
        try:
            (trans, rot)  = self.tf_listener.lookupTransform(self.odom_frame, self.base_frame, rospy.Time(0))
        except (tf.Exception, tf.ConnectivityException, tf.LookupException):
            rospy.loginfo("TF Exception")
            return

        return (Point(*trans), quat_to_angle(Quaternion(*rot)))

    def shutdown(self):
        # Always stop the robot when shutting down the node.
        rospy.loginfo("Stopping the robot...")
        self.cmd_vel.publish(Twist())
        rospy.sleep(1)
if __name__ == '__main__':
    try:
        OutAndBack()
    except:
        rospy.loginfo("Out-and-Back node terminated.")

3.下一步

你可能感兴趣的:(ROS 位置反馈控制机器人)