- 【费马小定理】【欧拉定理】【扩展欧拉定理】及其证明
syzyc
数论数论
费马小定理&欧拉定理及其证明注:此文所提到的“整数”“素数”等均指正数费马小定理对于一个素数ppp,任意整数aaa,若gcd(a,p)=1\gcd(a,p)=1gcd(a,p)=1(即aaa,ppp互质),则:ap−1≡1(modp)a^{p-1}\equiv1\pmod{p}ap−1≡1(modp)证明先找出所有小于等于ppp的与ppp互质的正整数,为序列A={1,2,3,…,p−1}A=\{
- 五、AIGC大模型_08Agent基础知识
学不会lostfound
AI人工智能agent不同生命周期的知识用AI处理AIGC
0、概述根据知识的生命周期分类,我们通常会采取不同的方法(微调、RAG、Agent)来将知识融入到AI中0.1长生命周期知识这类知识通常具有较高的稳定性和通用性,不会因时间的推移而轻易改变。它们是知识体系中的“基石”,在较长时间内保持有效性和价值。特点:稳定性强:如数学定理、物理公式等,这些知识经过长期验证,具有高度的确定性和普适性基础性强:往往是学习和研究其他知识的基础,例如教科书中的基础知识更
- 计算机视觉(Computer Vision, CV)的入门到实践的详细学习路线
云梦优选
计算机数据库大数据计算机视觉学习人工智能
一、基础准备1.数学基础线性代数深入矩阵运算,理解矩阵乘法、转置、逆等基本概念。掌握特征值与特征向量的几何意义,理解其在图像压缩、特征提取中的应用。学习奇异值分解(SVD)及其在降维和数据压缩中的具体应用。概率与统计熟悉贝叶斯定理及其在分类任务中的应用,如朴素贝叶斯分类器。理解常见概率分布(如正态分布、二项分布)及其性质。学习统计推断方法,如假设检验、置信区间估计,以评估模型性能。微积分掌握梯度、
- 即插即用模块--KANLinear
苏格拉没有鞋底
模型训练深度学习人工智能python
KAN网络KAN网络即Kolmogorov-Arnold网络,是一类基于Kolmogorov-Arnold表示定理的神经网络架构,具有强大的非线性表达能力。在相同迭代次数下超越传统MLP,不仅训练速度更快,收敛性更好,而且在拟合复杂函数时的精度也明显提高。这是一个即插即用模块–KANLinear,使用时import这个代码文件,然后模型中的nn.Linear换成这个KANLinear即可impor
- 一个数如果恰好等于它的因子之和,这个数就称为“完数“。例如6=1+2+3.编程找出1000以内的所有完数。-多语言
赔罪
Practicequestions算法javac语言javascriptpython
目录C语言实现Python实现Java实现Js实现题目:一个数如果恰好等于它的因子之和,这个数就称为"完数"。例如6=1+2+3.编程找出1000以内的所有完数。完数(PerfectNumber)是一个正整数,它等于其所有正因子(不包括自身)的和。换句话说,如果一个数n的所有正因子(除了n本身)相加的结果等于n,那么n就是一个完数。完数的性质完数是稀有的,已知的完数都是偶数。根据欧几里得的定理,完
- 用 Verilog 实现 0 到 18 计数器:从原理到实践的全解析
君临天下.鑫
modelsim波形仿真verilogfpga开发课程设计经验分享笔记编辑器
在数字电路设计中,计数器是极为重要的基础部件,广泛应用于各类数字系统。本次实验聚焦于设计一个从0到18计数的计数器,通过深入探索计数器的工作原理、利用组合逻辑控制计数范围,进一步加深对数字电路和Verilog语言的理解与应用。一、实验目的理解计数器通用原理:全面掌握计数器的基本工作原理,包括计数的方式、状态的转换以及与外部信号的交互等,为设计特定功能的计数器奠定理论基础。运用组合逻辑控制计数范围:
- 机器学习_重要知识点整理
嘉羽很烦
机器学习机器学习
机器学习重要知识点整理一、数学与理论基础1.概率与统计术语作用使用场景概率分布描述随机变量的取值概率,如正态分布、二项分布。数据建模(如高斯分布假设)、生成模型(如贝叶斯网络)。贝叶斯定理计算条件概率,更新先验知识以获得后验概率。贝叶斯分类器、文本分类(如垃圾邮件检测)。最大似然估计(MLE)通过数据最大化似然函数,估计模型参数。线性回归、逻辑回归参数估计。假设检验判断假设是否成立(如t检验、卡方
- 【从零开始学习计算机科学】数据库系统(十一)云数据库、NoSQL 与 NewSQL
贫苦游商
数据库学习nosqlnewsql云数据库CAPsql
【从零开始学习计算机科学】数据库系统(十一)云数据库、NoSQL与NewSQL云数据库云服务器的服务云数据库和传统的分布式数据库的异同NoSQLNoSQL数据库的特点CAP定理NoSQL的特性NoSQL数据库的分类NoSQL的适用场景Nosql数据库实例-RedisRedis的优势MongoDBMongoDB的特点NewSQLNewSQL出现的背景NewSQL(新型分布式数据库)的概念NewSQL
- 分布式架构的 CAP 定理、BASE 理论及其应用教程
宋发元
分布式架构
分布式架构的CAP定理、BASE理论及其应用教程在构建分布式系统时,数据一致性、系统可用性和网络分区容忍性是三个核心关注点。CAP定理和BASE理论为我们提供了指导原则,帮助在系统设计中进行合理权衡。本文将深入解析CAP定理和BASE理论,并结合实际应用案例,帮助你掌握在分布式架构中的应用策略。1.CAP定理:分布式系统的权衡法则1.1CAP定理概述CAP定理由EricBrewer提出,指出在一个
- CF576A Vasya and Petya‘s Game 题解
W9095
算法学习笔记c++
CF576AVasyaandPetya’sGame数论思维题。根据唯一分解定理,可以知道,如果一个数的各个质因数的数量确定了,这个数也就确定了。每次询问的中,如果xxx是yyy的倍数,证明xxx中含yyy的所有质因数。我们可以枚举质数,判定xxx能否整除这个质数,就可以判断xxx是否含有这个质因数。但是这还不能完全确定xxx,因为这样只能确定是否有某个质因数,而不能确定质因数的数量。为了确定质因数
- 【人工智能数学基础】——深入详解贝叶斯理论:掌握贝叶斯定理及其在分类和预测中的应用
猿享天开
人工智能数学基础专讲分类数据挖掘人工智能贝叶斯数学
深入详解贝叶斯理论:掌握贝叶斯定理及其在分类和预测中的应用贝叶斯理论(BayesianTheory)是概率论和统计学中的一个重要分支,它以托马斯·贝叶斯(ThomasBayes)命名,主要关注如何根据新的证据更新对某一事件的信念。贝叶斯定理作为贝叶斯理论的核心,在机器学习、数据分析、决策科学等多个领域中具有广泛的应用。本文将深入探讨贝叶斯定理的理论基础、数学表达及其在分类和预测中的应用,辅以实例和
- Zookeeper【概念(集中式到分布式、什么是分布式 、CAP定理 、什么是Zookeeper、应用场景、为什么选择Zookeeper 、基本概念) 】(一)-全面详解(学习总结---从入门到深化)
童小纯
中间件大全---全面详解zookeeper分布式
作者简介:大家好,我是小童,Java开发工程师,CSDN博客博主,Java领域新星创作者系列专栏:前端、Java、Java中间件大全、微信小程序、微信支付、若依框架、Spring全家桶如果文章知识点有错误的地方,请指正!和大家一起学习,一起进步如果感觉博主的文章还不错的话,请三连支持一下博主哦博主正在努力完成2023计划中:以梦为马,扬帆起航,2023追梦人目录Zookeeper概念_集中式到分布
- C语言优先队列作用,优先队列--C语言实现
CyberStar
C语言优先队列作用
优先队列--C语言实现向乔布斯致敬世界的今天因他而改变!世界的今天因他而多彩!JOBS优先队列--C语言实现/*binomial.h*/#ifndef_BINOMIAL_H_#define_BINOMIAL_H_typedeflongelement_type;#defineINFINITY(30000L)#defineMAX_TREES(14)#defineCAPACITY(16383)struc
- 王阳明代数讲义
花间流风
明明德数域王船山熵群与王阳明代数算法情感分析矩阵
王阳明代数讲义王阳明代数讲义古代代数学的发展中世纪与文艺复兴时期的代数学近代代数学的发展现代代数学的发展第一章意气实体过程讲义第二章情感分析与和悦空间的定义第三章王阳明代数的基本概念与定理第四章王阳明代数在问题解决中的应用第五章王阳明代数与情感分析、社会关系力学的结合第六章王阳明代数的数学基础与哲学思考第七章王阳明代数的未来研究方向与展望王阳明代数讲义前言王阳明哲学思想简述王阳明,名守仁,字伯安,
- 01计算机视觉学习计划
依旧阳光的老码农
计算机视觉计算机视觉人工智能
计算机视觉系统学习计划(3-6个月)本计划按照数学→编程→图像处理→机器学习→深度学习→3D视觉→项目实战的顺序,确保从基础到高级,结合理论和实践。第一阶段(第1-2个月):基础夯实✅目标:掌握数学基础、Python/C++编程、基本图像处理1️⃣数学基础(2周)每日2小时线性代数:矩阵运算、特征值分解(推荐《线性代数及其应用》)概率统计:高斯分布、贝叶斯定理微积分:偏导数、梯度下降傅里叶变换:图
- 从单块巨石到星辰大海:分布式与微服务的本质思考
斗-匕
分布式微服务架构
一、分布式系统:宇宙观的代码映射1.核心命题的进化单机时代(1960s-2000s):冯·诺依曼架构的终极演绎,摩尔定律撑起性能天花板分布式觉醒(2000s-):CAP定理的启示——放弃"完美系统"的幻想,在妥协中寻找最优解2.分布式三定律物理定律:光速限制下的通信延迟不可消除经济定律:成本边际效应决定拆分粒度组织定律:康威定律的幽灵始终在场(系统架构≈组织架构)3.典型范式对比模式特征案例主从架
- 中值定理总结_微分中值定理大总结
知乎圈子
中值定理总结
晚上好,今天对零零散散的微分中值定理做一个总结。微分中值定理不是一个定理,而是对罗尔定理、拉格朗日中值定理、柯西中值定理的总称,下面分别来看。一:罗尔定理设函数f(x)满足以下条件:(1)在闭区间[a,b]上连续;(2)在开区间(a,b)内可导;(3)在区间两端点处的函数值相等,即f(a)=f(b).那么至少存在一点ε∈(a,b),使得函数在该点处的导数为零,即f'(ε)=0.通常称导数等于零的点
- 【高等数学&学习记录】微分中值定理
测工
高等数学学习高等数学
一、知识点(一)罗尔定理费马引理设函数f(x)f(x)f(x)在点x0x_0x0的某邻域U(x0)U(x_0)U(x0)内有定义,并且在x0x_0x0处可导,如果对任意的x∈U(x0)x\inU(x_0)x∈U(x0),有f(x)≤f(x0)f(x)\leqf(x_0)f(x)≤f(x0)(或f(x)≥f(x0)f(x)\geqf(x_0)f(x)≥f(x0)),那么f′(x0)=0f'(x_0)
- 第六讲 中值定理、微分等式与微分不等式
Fan_558
考研笔记经验分享
前言这里记录我考研数学复习中的复习规范,通过文章格式严格要求自己每一章需要完成到什么程度,以及对我的复习提供一些帮助听课评估这一章主要内容是中值定理、微分等式与微分不等式等证明题,学这一讲花了大概一个星期,一开始的拉格朗日、罗尔、泰勒等证明根本搞不明白,后面还是靠多刷了两遍例题掌握的。微分等式与微分不等式比较简单,但是计算量比较大概念理解与记忆中值定理微分等式与不等式例题理解刷题收获与学习评估以下
- 分布式基本理论 - CAP,BASE 和 RAFT 算法
Yellow明
算法分布式
分布式基本理论-CAP,BASE和RAFT算法1.分布式基本理论1.1CAP理论在理论计算机科学中,CAP定理(CAPtheorem),又被称作布鲁尔定理(Brewer’stheorem),它指出对于一个分布式计算系统来说,不可能同时满足以下三点:[1][2]一致性(Consistency)(等同于所有节点访问同一份最新的数据副本)可用性(Availability)(每次请求都能获取到非错的响应—
- 分布式事务 CAP三进二和Base定理
柿子加油努力
DistributedTransactions分布式
关系型数据库遵循ACID原则事务在英文中是transaction,和现实世界中的交易很类似,它有如下四个特性:1、A(Atomicity)原子性原子性很容易理解,也就是说事务里的所有操作要么全部做完,要么都不做,事务成功的条件是事务里的所有操作都成功,只要有一个操作失败,整个事务就失败,需要回滚。比如银行转账,从A账户转100元至B账户,分为两个步骤:1)从A账户取100元;2)存入100元至B账
- 【无标题】四色定理拓扑证明的数学强化与物理深化框架
2301_81062744
拓扑学
###**四色定理拓扑证明的数学强化与物理深化框架**---####**一、拓扑收缩的数学严谨性补全**#####**1.1零点插入的平面性保持证明**-**Kuratowski定理应用**:验证插入零点后的图\(G'\)不含\(K_5\)或\(K_{3,3}\)子图。-**引理**:每次插入零点仅增加2度顶点,不改变图的平面类。-**证明**:设原图\(G\)为平面图,插入零点\(p\)将边\(
- ——四色定理的解析与证明(完整版)
2301_81062744
拓扑学
——四色定理的解析与证明(完整版)###**引言**四色定理自1852年诞生以来,始终是图论与拓扑学领域的核心难题。其简洁的表述——“任何平面地图仅需四种颜色即可实现邻接区域异色”——与证明过程的复杂性形成鲜明对比。1976年,Appel与Haken通过计算机穷举约1500种不可约构形,首次给出确定性证明,却因依赖机器验证引发了数学哲学层面的长期争议。此后,数学家们不断寻求更直观、更具构造性的证明
- 机器学习—赵卫东阅读笔记(一)
走在考研路上
深度学习了解机器学习笔记人工智能
第一章:机器学习基础1.1.2机器学习主要流派1.符号主义2.贝叶斯分类——基础是贝叶斯定理3.联结主义——源于神经学,主要算法是神经网络。——BP算法:作为一种监督学习算法,训练神经网络时通过不断反馈当前网络计算结果与训练数据之间的误差来修正网络权重,使误差足够小。4.进化计算——通过迭代优化,找到最佳结果。——具有自组织、自适应、自学习的特性,能够有效处理传统优化算法难以解决的复杂问题(例如N
- 系统对接方案_浅谈RPA系统
weixin_39881760
系统对接方案
首先本文是有感而发,其次是我本身是大数据和人工智能领域产品多年从业者,并不局限于RPA领域,做过一些RPA项目也和客户沟通并且提供过顾问和咨询服务,所以有一定理解。从网上可见的大部分文章包括本问题下面的回答中,都可以看到,大部分是宏观回答,从狭义来说,RPA可以是一个软件工具、可以是一套系统也可以是一个平台;RPA可以让办公自动化、业务流程自动化。从广义来说,任何一个可被规则化且突发、未知情况少的
- 洛谷模板汇整
Alaso_shuang
算法分类算法
普及-P3378【模板】堆P3367【模板】并查集P1177【模板】快速排序P3383【模板】线性筛素数P3370【模板】字符串哈希P3366【模板】最小生成树P1226【模板】快速幂||取余运算普及/提高-P3385【模板】负环P3865【模板】ST表P8306【模板】字典树P5788【模板】单调栈P3811【模板】乘法逆元P4549【模板】裴蜀定理P3372【模板】线段树1P3382【模板】三
- 集合论导引:第一递归定义定理
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
集合论,递归定义,第一递归定义定理,数学基础,计算机科学,数据结构,算法设计1.背景介绍在计算机科学的蓬勃发展中,集合论作为基础数学分支,扮演着至关重要的角色。它为数据结构、算法设计、程序语言等领域提供了坚实的理论基础。其中,递归定义是集合论中一个重要的概念,它能够简洁地描述复杂集合的结构和性质。本文将深入探讨第一递归定义定理,揭示其背后的数学原理和计算机科学中的应用。2.核心概念与联系2.1集合
- 图像算法工程师的技术图谱和学习路径
执于代码
开发者职业加速服务算法学习
01.图像算法图像算法工程师的技术图谱和学习路径涵盖了多个技术领域,从基础知识到高级算法,涉及计算机视觉、深度学习、图像处理、数学和编程等多个方面。以下是图像算法工程师的技术图谱和学习路径的详细总结。1.基础数学与编程数学基础:线性代数:矩阵运算、特征值、特征向量、奇异值分解(SVD)等概率论与统计:概率分布、贝叶斯定理、最大似然估计(MLE)、假设检验等微积分:导数、梯度、最优化方法(梯度下降、
- 【线代】《线性代数的几何意义》——摘录笔记(四)
jingyu404
线性代数读书及杂言
内容:大多是摘录原书,概括、理解是自己总结的。目的:供自己温习使用,有摘录不全或总结不精的部分。他人学习,仅供参考。目录U6线性方程组1.作用于向量的形式2.解的形式3.解的代数形式4.解的结构5.方程组、矩阵与向量的关系U7二次型1.定义2.表示(多项式与向量)3.用途4.几何意义5.二次型合同对角化6.惯性定理7.正定二次型笔记链接汇总U6线性方程组1.作用于向量的形式(1)看成矩阵对向量(x
- 线性代数(13)——向量空间、维度和四大子空间(下)
Jakob_Hu
线性代数
向量空间、维度和四大子空间零空间的基和秩-零化度定理零空间及零空间的基秩-零化度定理列空间与零空间对比零空间与矩阵的逆深入理解零空间左零空间回顾已有的三个子空间第四个子空间研究子空间的意义零空间的基和秩-零化度定理零空间及零空间的基一个齐次线性系统A⋅x=0A\cdotx=0A⋅x=0的解就是对应的系数矩阵的零空间。首先通过一个简单的齐次线性方程组进行演示,(−1231−4−13−354)⟹(10
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh ickes@192.168.27.211
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_