最长子序列和(由浅入深)

O(N^2)

 

package heng.java.level1;

import java.util.Scanner;

public class TheMostLongSequenceSum4 {
	public static void main(String[] args) {
		Scanner input = new Scanner(System.in);
		int m = input.nextInt();
		while(m-->0){
			int n = input.nextInt();
			int [] arr = new int [n];
			for (int i = 0; i < n; i++) {
				arr[i] = input.nextInt();
			}
			int max = maxSubSum(arr);
			System.out.println(max);
		}
	}
	public static int maxSubSum(int []arr){
		int maxSum = 0;
		for (int i = 0; i < arr.length; i++) {
			int thisSum = 0;
			for (int j = i; j < arr.length; j++) {
				thisSum += arr[i];
				if(thisSum > maxSum){
					maxSum = thisSum;
				}
			}
		}
		return maxSum;
	}

}

 

 O(n)  动态规划

package heng.java.level1;

import java.util.Scanner;

public class TheMostLongSequenceSum3 {
	public static void main(String[] args) {
		Scanner input = new Scanner(System.in);
		int m = input.nextInt();
		while(m-->0){
			int n = input.nextInt();
			int [] arr = new int [n];
			for (int i = 0; i < n; i++) {
				arr[i] = input.nextInt();
			}
			int max = maxSubSum(arr);
			System.out.println(max);
		}
		
	}
	public static int maxSubSum(int []arr){
		int maxSum = 0, thisSum = 0;
		for(int j=0; j<arr.length; j++){
			thisSum += arr[j];
			if(thisSum > maxSum){
				maxSum = thisSum;
			}else if(thisSum < 0){
				thisSum = 0;
			}
		}
		return maxSum;
	}
}


 

O(N) 

递归&&分治法:

例子:4 ,-3,5,-2,-1,2,6,-2

第一次分治:左={4 ,-3,5,-2}下标:0~3------右={-1,2,6,-2}下标:4~7

左边第二次分治:左={4 ,-3}下标:0~1-------右={5,-2}下标:2~3

左边第三次分治:左={4}下标:0~0 ----- 右={-3}下标:1~1

     第三次分治递归左:返回4,右返回-3,经过两个for循环,比较4,-3,(4+-3)=1这三个数的大小,取最大的,得maxSum=4   (一)

     返回上一层(第二次分治时):右={5,-2}下标:2~3  同理如(一)得:右 maxSum=5

     返回上一层(第一次分治时):左:{4}右:{5}同理如(一)得:maxSum=6(比较4,5,((4+-3)+(5+-2)))这个三个的大小,最大的,得6

(以上为第一次分治时的左半部份)接下来同理,得右半部份为8 

 

package heng.java.level1;

import java.util.Scanner;

public class TheMostLongSequenceSum2 {
	public static void main(String[] args) {
		Scanner input = new Scanner(System.in);
		int m = input.nextInt();
		
		while(m-->0){
			int n = input.nextInt();
			int [] arr = new int [n];
			for (int i = 0; i < n; i++) {
				arr[i] = input.nextInt();
			}
			int max = maxSumRec(arr,0,arr.length-1);
			System.out.println(max);
			
		}
	}
	public static int maxSumRec(int []arr, int left, int right){
		if(left == right){
			if(arr[left] > 0){
				return arr[left];
			}else{
				return 0;
			}
		}
		int center = (left+right)/2;
		int maxLeftSum = maxSumRec(arr,left,center);
		int maxRightSum = maxSumRec(arr,center+1,right);
		
		int maxLeftBorderSum=0,leftBorderSum=0;
		for(int i=center; i>=left; i--){
			leftBorderSum += arr[i];
			if(leftBorderSum > maxLeftBorderSum){
				maxLeftBorderSum = leftBorderSum;
			}
		}
		int maxRightBorderSum=0,rightBorderSum=0;
		for(int i=center+1; i<=right; i++){
			rightBorderSum += arr[i];
			if(rightBorderSum > maxRightBorderSum){
				maxRightBorderSum = rightBorderSum;
			}
		}
		int sum = maxRightBorderSum+maxLeftBorderSum;
		if(sum < maxLeftSum) sum = maxLeftSum;
		if(sum < maxRightSum) sum = maxRightSum;
		return sum;
	}
	
}


 

同动态规划:

package heng.java.level1;

import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;

public class TheMostLongSequenceSum {
	public static void main(String[] args) {
		
		List<Integer> list = new ArrayList<Integer>();
		Scanner input = new Scanner(System.in);
		int m = input.nextInt();
		while(m-->0){
			int n = input.nextInt();
			for (int i = 0; i < n; i++) {
				list.add(input.nextInt());
			}
			int max = 0;
			int []arr = new int [list.size()];
			arr[0] = list.get(0);
			for (int j = 1; j < list.size(); j++) {
				if(arr[j-1] <= 0){
					arr[j]=list.get(j);
				}
				else{
					arr[j] = arr[j-1]+list.get(j);
				}
			}
			for (int i = 0; i < list.size(); i++) {
				if(max < arr[i]){
					max = arr[i];
				}
			}
			System.out.println(max);
		}
	}
}


 

你可能感兴趣的:(最长子序列和(由浅入深))