题目链接:UVa 1342 That Nice Euler Circuit
几何。
欧拉定理,设平面图的顶点数、边数、和面数分别为V,E和F,则V+F-E=2。
然后求出来顶点数和边数就可以了。
主要还是用了白书上的几何模版,很好很强大。
#include <iostream> #include <cmath> #include <cstdio> #include <algorithm> using namespace std; const double eps = 1e-10; const int MAX_N = 300 + 10; struct Point { double x, y; Point(double x=0, double y=0):x(x),y(y) { } }; typedef Point Vector; Vector operator + (const Vector& A, const Vector& B) { return Vector(A.x+B.x, A.y+B.y); } Vector operator - (const Point& A, const Point& B) { return Vector(A.x-B.x, A.y-B.y); } Vector operator * (const Vector& A, double p) { return Vector(A.x*p, A.y*p); } bool operator < (const Point& a, const Point& b) { return a.x < b.x || (a.x == b.x && a.y < b.y); } int dcmp(double x) { if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } bool operator == (const Point& a, const Point &b) { return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0; } double Dot(const Vector& A, const Vector& B) { return A.x*B.x + A.y*B.y; } double Length(const Vector& A) { return sqrt(Dot(A, A)); } double Angle(const Vector& A, const Vector& B) { return acos(Dot(A, B) / Length(A) / Length(B)); } double Cross(const Vector& A, const Vector& B) { return A.x*B.y - A.y*B.x; } bool SegmentProperIntersection(const Point& a1, const Point& a2, const Point& b1, const Point& b2) { double c1 = Cross(a2-a1,b1-a1), c2 = Cross(a2-a1,b2-a1), c3 = Cross(b2-b1,a1-b1), c4=Cross(b2-b1,a2-b1); return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0; } bool OnSegment(const Point& p, const Point& a1, const Point& a2) { return dcmp(Cross(a1-p, a2-p)) == 0 && dcmp(Dot(a1-p, a2-p)) < 0; } Point GetLineIntersection(const Point& P, const Point& v, const Point& Q, const Point& w) { Vector u = P-Q; double t = Cross(w, u) / Cross(v, w); return P+v*t; } Vector Rotate(const Vector& A, double rad) { return Vector(A.x*cos(rad)-A.y*sin(rad), A.x*sin(rad)+A.y*cos(rad)); } Point p[MAX_N], v[MAX_N * MAX_N]; int n, cnt; int main() { cnt = 0; while(scanf("%d", &n), n) { for(int i = 0; i < n; i++) { scanf("%lf%lf", &p[i].x, &p[i].y); v[i] = p[i]; } n--; int c, e; c = e = n; //枚举边添加点 for(int i = 0; i < n; i++) { for(int j = i + 1; j < n; j++) { if(SegmentProperIntersection(p[i], p[i + 1], p[j], p[j + 1])) v[c++] = GetLineIntersection(p[i], p[i + 1] - p[i], p[j], p[j + 1] - p[j]); } } //可能出现三线共点,所以需要删除重复的点 sort(v, v + c); c = unique(v, v + c) - v;//返回不重复元素的数目 /**添加边 添加新边,OnSegment判断点v[i]是否在p[j]和p[j + 1]组成的线段上,不包括端点。 枚举的边都是原有边, 那么如果一个点在线段上,这个点就把这条线段分成了两段,所以边数需要加1, 如果这个点是这条边的端点,边数不需要加1,其实就是说明这个点是原有点,而原有点不会分割原有线段 这个逻辑也正符合OnSegment的判定规则。 **/ for(int i = 0; i < c; i++) for(int j = 0; j < n; j++) if(OnSegment(v[i], p[j], p[j + 1])) e++; printf("Case %d: There are %d pieces.\n", ++cnt, e - c + 2); } return 0; }