- OpenCV入门6——图像基本变换
源代码•宸
OpenCVopencv人工智能计算机视觉经验分享
文章目录图像的放大与缩小缩放算法放大图像的翻转图像的旋转仿射变换之图像平移仿射变换之获取变换矩阵仿射变换之变换矩阵之二OpenCV透视变换图像的放大与缩小缩放算法#-*-coding:utf-8-*-importcv2importnumpyasnpimg=cv2.imread('E://pic//4.jpg')#(600,480,3)new_img=cv2.resize(img,(300,240)
- OpenCv图像基本变换
几两春秋梦_
Opencvopencv人工智能计算机视觉
目录一、图像翻转二、图像旋转三、仿射变换之平移四、仿射变换之获取变换矩阵五、仿射变换之透视变换一、图像翻转图像翻转不等同于旋转,类似于一些视频的拍摄,拍摄后实际是左右颠倒的,通过图像翻转可进行还原案例代码如下:#图片翻转filpCode=0表示上下翻转flipCode>0表示左右翻转flipCOde<0表示上下+左右翻转new_first=cv2.flip(first,flipCode=-1)二、
- OpenCV4入门到进阶
Chance Z
OpenCV4pythonpandas
OpenCV4入门到进阶第1章介绍与学习指南第2章OpenCV开发环境搭建第3章图像&视频的加载与展示第4章OpenCV必知必会基础第5章OpenCV实现图形的绘制第6章OpenCV的算术与位运算第7章图像基本变换第8章OpenCV中的滤波器第9章OpenCV中的形态学第10章目标识别-车辆统计项目第11章特征点检测与匹配–图像拼接项目第12章图像的分割与修复第13章机器学习-人脸识别项目第14章
- OpenCV(6)-实现图像基本变换
zxyccm
opencv计算机视觉python
OpenCV实现图像基本变换图像的放大与缩小图像缩放:resize(src,dst,dsize,fx,fy,interpolation)fx:x轴的缩放因子fy:y轴的缩放因子interpolation:差值算法INTER_NEAREST:邻近差值,速度快,效果差INTER_LINEAR:默认,双线性差值,原图中的四个点,快,效果好INTER_CUBIC:三次差值,原图中的16个点,较慢INTER
- OpenCV之图像基本变换
秃头蜘蛛
opencv计算机视觉人工智能
图像的缩放new=cv2.resize(img,(dsize),fx,fy,interporation)img:原始图片(desize):目的像素大小,描述时是(x,y)fx:沿着x轴缩放比例fy:沿着y轴缩放比例interporation:插值算法,即采用哪种算法对图像进行缩放【注:dsize和fx,fy只需设置一个就行。new=cv2.resize(dog,None,fx=2,fy=2,int
- 【OpenCV学习】(六)图像基本变换
一个热爱学习的深度渣渣
OpenCVopencv计算机视觉python图像处理程序员
【OpenCV学习】(六)图像基本变换背景图像的变换通常用于数据预处理部分,例如缩放旋转等常见的图像变换方法;在一些深度学习框架内部都分装了图像变换的方法,对训练集做统一的图像变换操作;一、图像缩放函数原型:resize(src,dsize,[fx,fy,interpolation])fx:x轴的缩放因子;fy:y轴的缩放因子;interpolation:插值算法;插值算法有以下几种:1、INTE
- 【数字图像处理】实验(5)——图像分割与描述(MATLAB实现)
虚神公子
数字图像处理matlab图像处理算法
链接:【数字图像处理】实验(1)——图像基本变换链接:【数字图像处理】实验(2)——图像增强(MATLAB实现)链接:【数字图像处理】实验(3)——图像综合应用:皮肤美化(MATLAB实现)链接:【数字图像处理】实验(4)——图像复原及几何校正(MATLAB实现)图像分割与描述一、实验目的二、实验内容三、实验原理四、Matlab相关函数介绍五、实验代码及结果(包括分析、代码和波形)(1)将Imag
- MATLAB图像基本变换实验报告,MATLAB图像增强与变换处理实验报告
人行有师
实验一MATLAB图像增强与变换处理实验一、实验目的1、熟悉掌握数字图像处理的基本概念。2、了解MATLAB的的编程环境,图像处理工具箱的使用方法。3、掌握数字图像处理图像增强的基本方法。4、掌握图像变换的基本方法。5、学会使用MATLAB完成图像处理的主要功能。二、实验任务(1)各种格式的数字图像的读取、显示、存储。1.1程序a=imread('liusuo.tif');%tiffigureim
- 【数字图像处理】实验(1)——图像基本变换
虚神公子
数字图像处理matlab图像处理算法
图像基本变换一、实验意义及目的二、实验内容三、实验原理四、Matlab相关函数介绍五、代码及结果(1)将Image1色彩通道互换,并显示效果;(2)将Image1灰度化为gray,并显示灰度化后图像;(3)采用不同的插值方法实现gray的旋转、放大变换;(4)打开另一幅彩色图像Image2,和Image1进行代数运算,要求运用拼接、加减乘除等多种技术;(5)拓展内容(1)将彩色图像采用不同的灰度化
- 实验一 图像基本变换
谢三公主
数字图像处理matlab图像处理计算机视觉
一、实验目的:(1)了解和掌握图像处理工具Matlab,熟悉基于Matlab的图像处理函数,并为下一步编程进行图像处理打下基础。(2)理解色彩的概念,掌握图像代数运算,几何变换方法。二、实验原理(1)imread函数功能:实现多种类型图像文件的读取,如:BMP、GIF、JPEG、PNG、RAS等。调用格式:A=imread(filename,fmt)。filename为图像文件名,可以是灰度图像,
- 15.Opencv中图像基本变换
稚子
Opencv学习笔记opencvvscodepython
1.图像的缩放resize(src,dst,dsize,fx,fy,interpolation)src:操作图像dst:输出,在python中可以不用dsize:目标大小fx:x轴的缩放因子fy:y轴的缩放因子,如果定义了dsize则不需要设置fxfyinterpolation:插值算法常用缩放算法:INTER_NEAREST邻近插值,速度快,效果差INTER_LINEAR双线性插值,原图中的4个
- 【数字图像处理】实验一图像基本变换(MATLAB实现)
wlt_1203
matlab数字图像处理matlab图像处理
目录一、实验意义及目的二、实验内容三、Matlab相关函数介绍四、参考代码五、运行结果六、实验要求(1)将彩色图像采用不同的灰度化方法实现灰度化;(2)将彩色图像变换到YCbCr、HSV空间,熟悉各分量数据并显示。(3)不采用Matlab函数,自行设计基于双线性插值的图像放大程序;一、实验意义及目的(1)了解和掌握图像处理工具Matlab,熟悉基于Matlab的图像处理函数,并为下一步编程进行图像
- 图像基本变换--- 平移、旋转、缩放、仿射变换、镜像
bravebean
图像基础
图像平移变换函数[算法说明]图像平移就是使图像沿水平方向和垂直方向移动。如果把坐标原点(0,0)平移到点(x0,y0)处,则变换公式为:(x,y)为原始图像坐标,(x',y')为变换后的图像坐标。而图像中的各个像素点移动了sqrt(x*x+y*y)距离。用矩阵表示为2-(22):[函数代码]//////Translationprocess.//////Sourceimage.///Translat
- 图像基本变换---KMeans聚类算法
bravebean
图像基础
本文将详细介绍K-Means均值聚类的算法及实现。聚类是一个将数据集中在某些方面相似的数据成员进行分类组织的过程。K均值聚类是最著名的划分聚类算法,由于简洁和效率使得他成为所有聚类算法中最广泛使用的。给定一个数据点集合和需要的聚类数目k,k由用户指定,k均值算法根据某个距离函数反复把数据分入k个聚类中。算法过程:1,初始化聚类数目K,并任意选择K个初始化均值ui。2,迭代图像中每个像素f(x,y)
- 深度学习中常用的Pillow及Opencv操作汇总
沃兹基.硕德
深度学习
深度学习中各种图像库的图片读取方式https://blog.csdn.net/u013841196/article/details/81194310初学者福利!深度学习最常用OpenCV的操作http://www.360doc.com/content/18/0915/22/2005961_786979800.shtml#初学者福利!深度学习最常用的OpenCV操作——图像基本变换http://ww
- C语言数字图像处理---1.5图像基本变换之平移缩放旋转
Trent1985
零基础C语言数字图像处理利器
本篇作为新年到来前的最后一篇,提前祝大家新年快乐!图像几何变换又叫做图像基本变换,主要包括图像平移、图像缩放和图像旋转几个部分,当然还有图像镜像等简单的内容。图像基本变换是图像处理的基本内容,是学习以后复杂的仿射变换、透视变换以及更高级的MLS网格变形等内容的基础,意义重大。本篇将从平移、缩放和旋转三个方面来讲解如何单纯使用C语言来轻松实现这三个算法。图像平移变换[定义与算法]图像平移变换可以表示
- C语言数字图像处理---进阶篇(一)
Trent1985
零基础C语言数字图像处理利器
前面我们系统的讲述了基础的数字图像处理知识,这些内容涉及以下几个部分:①图像读写②图像基本变换③图像颜色空间④图像噪声⑤图像滤波与增强⑥图像边缘检测上述几个部分,实际上,也是任何一本数字图像处理专业书籍的基本组成部分。在介绍上述内容时,我们单纯以C语言的方式来实现算法内容,通俗易懂,同时不依赖任何第三方库,这样做最大的好处就是方便初学者真正的从0开始入门图像处理,因为,你可以真正的做到所有算法的“
- Keras下的图像基本变换ImageDataGenerator参数说明
bosa1082
PythonKeras机器学习
featurewise_center:使输入数据集去中心化(均值为0),按feature执行。samplewise_center:使输入数据的每个样本均值为0。featurewise_std_normalization:将输入除以数据集的标准差以完成标准化,按feature执行。samplewise_std_normalization:将输入的每个样本除以其自身的标准差。zca_whitening
- 图像基本变换---图像曝光+反相算法
bravebean
图像基础
[算法说明]设置一阈值T属于[0,255],对于灰度值小于该阈值的像素,将其R,G,B值按公式2-(40)取逆,从而使图像产生正片和负片混合的效果。[函数代码]//////Exposureprocess.//////Sourceimage.///Toadjustexposurelavel,from0to255.///publicstaticWriteableBitmapExposureProces
- 图像基本变换---图像曝光+反相算法
bravebean
图像基本变换
[算法说明]设置一阈值T属于[0,255],对于灰度值小于该阈值的像素,将其R,G,B值按公式2-(40)取逆,从而使图像产生正片和负片混合的效果。[函数代码] /// /// Exposureprocess. /// /// Sourceimage. /// Toadjustexposurelavel,from0to255
- 图像基本变换---图像亮度对比度调增算法
bravebean
图像基础
[图像亮度]图像亮度调整公式如公式2-(5)所示:其中v属于[-255,255]。由于像素值的大小范围为[0,255],因此,像素的亮度值可以用原始值与调整增量的和表示,且最大亮度为255,即白色,最小亮度为0,即黑色。[函数代码]//////Brightadjustprocess.//////Sourceimage.///Brightnessvalue,from-255to255.///publ
- 图像基本变换---图像亮度对比度调增算法
bravebean
图像基本变换
[图像亮度]图像亮度调整公式如公式2-(5)所示: 其中v属于[-255,255]。 由于像素值的大小范围为[0,255],因此,像素的亮度值可以用原始值与调整增量的和表示,且最大亮度为255,即白色,最小亮度为0,即黑色。[函数代码] /// /// Brightadjustprocess. /// /// Sourceimage.
- 图像基本变换---图像线性变换
bravebean
图像基本变换
图像线性变换即线性点运算,输出灰度级与输入灰度级呈线性关系的点运算。公式如2-(9)所示。 其中,K,L为变换参数,k属于[0,5],L属于[-128,128]。 如果k,则输出图像的对比度将增大,反之对比度将减小,k=1,L=0时,输出图像为输入图像的副本,L是对图像亮度的调整。[函数代码] /// /// Lineartransformprocess(f=kf
- 图像基本变换---KMeans聚类算法
bravebean
图像基本变换
本文将详细介绍K-Means均值聚类的算法及实现。 聚类是一个将数据集中在某些方面相似的数据成员进行分类组织的过程。K均值聚类是最著名的划分聚类算法,由于简洁和效率使得他成为所有聚类算法中最广泛使用的。给定一个数据点集合和需要的聚类数目k,k由用户指定,k均值算法根据某个距离函数反复把数据分入k个聚类中。 算法过程: 1,初始化聚类数目K,并任意选择K个初始化均值ui。 2,迭代图像中每个像素
- 图像基本变换---Canny边缘检测算法
bravebean
图像基本变换
本文将详细介绍经典Canny边缘检测的算法实现。 Canny边缘检测算法可以分为4步:高斯滤波器平滑处理、梯度计算、非极大值抑制、双阈值边缘检测和边缘连接。 1,高斯滤波器平滑处理。由于图像中经常包含一些高斯噪声,因此在边缘检测前我们要先用高斯滤波器对其进行滤波,为了方便,通常是使用一些高斯模板,这里我们使用如下的高斯滤波器模板。 2,梯度计算。使用一阶导数算子(一般用sobel模板)计
- 图像基本变换---Harris角点检测算法
bravebean
图像基本变换
本文将详细介绍角点检测的算法内容。目前的角点检测算法可归纳为3类:基于灰度图像的角点检测、基于二值图像的角点检测、基于轮廓曲线的角点检测。基于灰度图像的角点检测又可分为基于梯度、基于模板和基于模板梯度组合3类方法,其中基于模板的方法主要考虑像素领域点的灰度变化,即图像亮度的变化,将与邻点亮度对比足够大的点定义为角点。本文将介绍一种改进的Harris角点检测算法,该算法是一种基于模板与梯度组合的方法
- 图像基本变换---图像快速高斯模糊算法
bravebean
图像基本变换
本文将详细介绍经典高斯滤波的相关内容。高斯滤波器实质上是一种信号的滤波器,其用途是信号的平滑处理。它是一类根据高斯函数的形状来选择权重的线性平滑滤波器,该滤波器对于抑制服从正态分布的噪声非常有效。高斯函数的公式如下所示:一维高斯函数: 二维高斯函数: 对于二维高斯函数,它的分布如下图所示:Fig.1二维Gauss分布对于二维高斯函数,我们设置两个参数:高斯半
- 图像基本变换---图像伪色彩
bravebean
图像基本变换
本文将详细介绍图像伪彩色处理的相关内容。 demo: http://www.zealfilter.com/forum.php?mod=viewthread&tid=43&extra=page%3D1
- 图像基本变换---快速均值模糊算法
bravebean
图像基本变换
本文将介绍图像滤波中常用的均值滤波算法内容。 图像均值算法就是取一个窗口的均值,即所谓的boxfilter。一般使用积分图来加速算法。 假设图像P的长宽分别为x,y,均值为Mean 均值滤波很容易理解,直接给出C代码如下,欢迎交流:voidFastMeanFilter(unsignedchar*srcData,intwidth,intheight,intstride,unsigned
- 图像基本变换---图像灰度化
bravebean
图像基本变换
图像灰度化处理就是去掉彩色图像的彩色信息。对于一张图像,其中的每一个像素都存在B,G,R三个颜色分量(这里不考虑透明度分量),这三个分量在C#中是按照B→G→R的顺序进行存储的,这三个分量的值分别取在0-255范围之内,对于不同取值,相应的也就产生了不同的颜色信息。如果以X,Y,Z轴分别描述R,G,B分量构建三维坐标系,则颜色分布如图所示: 我们通常所说的灰度化是将R,G,B三个分量分别赋予一个
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多