- Torch安装必知
m0_52111823
人工智能
从硬件到Torch的支持链条如下Nvidia显卡Nvidia显卡驱动CudaTorchCudnncudnn对torch不是必需,部分项目会依赖cudnn。查看本机显卡版本型号,win+R,输入DxDiag,在显示或呈现栏包含显卡信息查看显卡版本与显卡驱动版本的兼容性,在https://www.nvidia.cn/geforce/drivers/,查看本机显卡支持的显卡驱动,根据搜索结果下载最新的N
- 如何高效运行 DeepSeek-R1:分步指南
知识大胖
NVIDIAGPU和大语言模型开发教程deepseekjanusproollama
简介DeepSeek-R1是一个功能强大的开源AI模型,但要高效运行它,需要仔细的硬件选择、优化和部署策略。无论您想在Mac上本地运行它,还是在云GPU上运行它,还是优化性能以供大规模使用,本指南都会逐步引导您完成所有操作。推荐文章《如何在本地电脑上安装和使用DeepSeekR-1》权重1,DeepSeek《Nvidia系列之使用NVIDIAIsaacSim和ROS2的命令行控制您的机器人》权重1
- 一文搞懂最新NVIDIA GPU满血版和阉割版芯片:A100、H100、A800、H800、H20的差异
神马行空
GPU芯片AI编程gpu算力
目录一、NVIDIAGPU架构1、Blackwell架构2、Hopper架构3、Ampere架构4、Turing架构5、Volta架构二、A100、H100、A800、H800、H20差异对比1.A100:数据中心AI计算的奠基石2.H100:性能提升的算力王者3.A800&H800:中国市场专供版4.H20:新一代受限算力GPU一、NVIDIAGPU架构1、Blackwell架构Blackwel
- NVIDIA jetson查看资源占用情况,打印/保存资源使用情况日志
低配加班人
jetson日志工具测试工具
1.jtopjtop这个一般都有安装,只能实时查看安装方式为sudo-Hpipinstalljetson-stats运行就是直接jtop即可2.tegrastats这个是jetson自带的工具,可以保存日志到文件,用于测试资源占用有无异常比较好用,如果资源有异常,但是不知道具体现象,可以打开日志功能,再打开异常程序,放在一边跑就行。tegrastats在目录/usr/bin/下使用tegrasta
- window11和Ubuntu20.04安装Nvidia驱动和CUDA的正确方法
qq_29128985
linuxpython深度学习
零、双系统安装Win11Ubuntu20.04双系统安装解决ubuntu+win11双系统时间不一致问题Ubuntu:系统分区一、安装Nvidia驱动参考:Ubuntu20.04安装NVIDIA显卡驱动、CUDA、CUDNN及突破NVENC并发限制、多版本CUDA切换1、准备工作1)查看显卡型号lspci|grep-invidia2)禁用nouveau并重启(安装Nvidia显卡的官方驱动和系统自
- 开发基于提示工程的大语言模型(LLM)应用——学习笔记
ricky_fan
人工智能python
本文是学习笔记。学习通过提示工程与大语言模型进行程序化的交互。将从最基本的开始,比如使用哪些模型,以及如何向它们发送提示词并查看响应。将逐步构建更复杂的提示词,并学习LangChain为我们提供的、用于与大语言模型交互的丰富工具。Langchain链核心是运行时(runnable),它们能以多种方式组合的为工作流。如何创建LangChain链 fromlangchain_nvidia_ai_end
- Anaconda配置tensorflow-gpu教程
rubisco214
tensorflow人工智能python
最近在入门tensorflow深度学习,配置环境吃了不少苦头,写个完整的教程首先得在自己主机上装cuda(我之前就是主机上没装cuda,只在虚拟环境里面装了,结果jupyter里面怎么调都识别不到GPU)打开Nvidia控制面板,左上角帮助-系统信息-组件NVCUDA64.DLL后面的NVIDIACUDA12.1就是你的显卡支持的CUDA版本,去CUDA官网CUDAToolkitArchive|N
- 【有啥问啥】深入了解 FlashMLA:Hopper GPU 的高效 MLA 解码内核
有啥问啥
大模型行业调研科普算法语言模型
深入了解FlashMLA:HopperGPU的高效MLA解码内核简介在人工智能(AI)领域,特别是大型语言模型(LLM)领域,对计算效率和速度的需求持续增长。为了应对这些挑战,DeepSeek推出了FlashMLA,这是一种专为NVIDIAHopperGPU架构优化的高效MLA(Multi-LayerAttention)解码内核。FlashMLA旨在加速LLM的解码过程,从而显著提高模型的响应速度
- Stable diffusion 3.5本地运行环境配置记录
寸先生的牛马庄园
扩散模型stablediffusion
1.环境配置创建虚环境condacreate-nsd3.5python=3.10Pytorch(>2.0)condainstallpytorch==2.2.2torchvision==0.17.2torchaudio==2.2.2pytorch-cuda=12.1-cpytorch-cnvidiaJupyter能使用Anaconda虚环境condainstallipykernelpython-mi
- Llama.cpp 服务器安装指南(使用 Docker,GPU 专用)
田猿笔记
AI高级应用llama服务器dockerllama.cpp
前置条件在开始之前,请确保你的系统满足以下要求:操作系统:Ubuntu20.04/22.04(或支持Docker的Linux系统)。硬件:NVIDIAGPU(例如RTX4090)。内存:16GB+系统内存,GPU需12GB+显存(RTX4090有24GB)。存储:15GB+可用空间(用于源码、镜像和模型文件)。网络:需要互联网连接以下载源码和依赖。软件:已安装并运行Docker。已安装NVIDIA
- H100生成式AI效能跃升指南
智能计算研究中心
其他
内容概要作为NVIDIAHopper架构的旗舰产品,H100GPU通过革命性的硬件设计与计算范式重构,为生成式AI工作负载提供了前所未有的加速能力。本文将从芯片架构创新出发,首先解析第四代TensorCore如何通过FP8精度支持与动态指令调度机制,实现矩阵运算效率的指数级提升;继而探讨显存子系统在带宽扩容与智能缓存分配上的突破,揭示其突破生成式AI内存墙的关键路径。在技术实践层面,文章系统梳理了
- A100高效架构深度解析
智能计算研究中心
其他
内容概要NVIDIAA100GPU作为面向人工智能与高性能计算的关键硬件载体,其架构创新标志着计算范式的重要演进。本文通过系统性拆解A100的核心技术模块,重点探讨其在计算密度、互联效率与资源利用率三个维度的突破性设计。在计算架构层面,第三代TensorCore通过引入细粒度结构化稀疏支持与新型数据格式,显著提升矩阵运算效率;多实例GPU(MIG)技术则通过物理级硬件隔离实现单卡多任务并行处理,为
- nvidia docker, nvidia docker2, nvidia container toolkits区别
coco_1998_2
#CUDA#Dockerdocker容器
背景在docker容器中用GPU时,查阅了网上许多教程,教程之间概念模糊不清,相互矛盾,过时的教程和新的教程混杂在一起。主要原因是Nvidia为docker容器的支持发生了好几代变更,api发生了不少变化。下面来总结一下各代支持发展历程。省流版总结凡是使用了命令nvidiadocker或者在docker中引入了--runtime=nvidia参数的都是过时教程,最新方法只需要下载nvidia-co
- DeepSeek本地部署必要性分析及云端替代方案推荐
Asher_Yao
人工智能
一、本地部署适用场景分析硬件要求完整版模型需≥32GB显存(推荐NVIDIAA100/A800)基础版也需RTX3090级别显卡(约150W功耗)适用人群建议✔️企业用户:需私有化部署处理敏感数据✔️研究人员:需定制模型微调✔️开发者:需API深度集成维护成本单节点年运维成本≈¥18,000(含电费/散热)二、已验证的云端替代方案(2025.2实测)方案1:硅基流动SaaS平台技术特性:支持API
- docker部署GPU环境
atom goper
grudocker
使用Docker部署GPU环境涉及到几个关键步骤,以下是详细步骤:1.安装NVIDIA驱动程序确保你的系统已经安装了NVIDIAGPU驱动。这是使用GPU的前提条件。2.安装Docker和nvidia-container-toolkit首先,确保你已经安装了Docker。然后,安装NVIDIAContainerToolkit,它允许Docker容器访问宿主机上的GPU资源。对于Ubuntu系统,安
- A100 解析:为何它成为 AI 大模型时代的首选?
PPIO派欧云
算力gpu算力算法ai
前言NVIDIAA100TensorCoreGPU可针对AI、数据分析和HPC应用场景,在不同规模下实现出色的加速,有效助力更高性能的弹性数据中心。A100采用NVIDIAAmpere架构,是NVIDIA数据中心平台的引擎。A100的性能比上一代产品提升高达20倍,并可划分为七个GPU实例,以根据变化的需求进行动态调整。A100提供40GB和80GB显存两种版本,A10080GB将GPU显存增加了
- Linux进程相关命令之nvidia-smi
find_element_by_id
linux服务器运维
进程管理命令是进行系统监控和进程管理时的重要工具,常用的进程管理命令有以下几种:ps:查看正在运行的进程top:动态显示正在运行的进程pstree:树状查看正在运行的进程pgrep:用于查找进程nice:更改进程的优先级jobs:显示进程的相关信息bg和fg:将进程调入后台kill:杀死进程在开发机中还有一条特殊的命令nvidia-smi,它是NVIDIA系统管理接口(NVIDIASystemMa
- NVIDIA CUDA Compiler Driver NVCC
Yongqiang Cheng
NVIDIAGPU-CUDA-cuDNNNVIDIACUDACompilerNVCC
NVIDIACUDACompilerDriverNVCC4.2.8.23.`--list-gpu-code`(`-code-ls`)4.2.8.24.`--list-gpu-arch`(`-arch-ls`)Referenceshttps://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/Thedocumentationfornvcc,theCUDA
- NVIDIA JetPack 6.2 引入超级模式
雨田嘟嘟
nvidialinux
NVIDIAJetPack6.2为NVIDIAJetsonOrinNano和JetsonOrinNX模块引入超级模式借助SuperModes,JetsonOrinNX系列可将AITOPS提升高达70%。你值得拥有!!!Jetson平台服务:一系列即用型服务,用于在Jetson上加速AI应用程序开发。JetPack6JetPack6是有史以来最大的升级。它不仅带来了更新的内核和更新的Ubuntu根文
- 云原生周刊:云原生和 AI
云计算
开源项目推荐FlashMLADeepSeek于北京时间2025年2月24日上午9点正式开源了FlashMLA项目。FlashMLA是专为NVIDIAHopper架构GPU(如H100、H800)优化的高效多头潜在注意力(MLA)解码内核,旨在提升大模型推理性能,特别是针对可变长度序列进行了优化。性能表现:在NVIDIAH800SXM5GPU上,FlashMLA展现了卓越的性能:内存带宽:高达300
- 下载cuda11.2+cudnn8.1+tensorflow-gpu2.5
听微雨
深度学习tensorflow人工智能
下载前请先安装显卡驱动,去显卡官网找对应的驱动,英伟达4060就去英伟达官网找4060的驱动。安装cuda11.2和cudnn8.1要注意自己的版本,目前tensorflow-gpu2.5或最高版本tensorflow-gpu2.6只支持cuda11.2和cudnn8.1。同时cuda版本要低于显卡最高支持版本,使用命令行语句查看:nvidia-smi具体安装过程看cuda11.2+cudnn8.
- 【TVM教程】为 NVIDIA GPU 自动调度神经网络
HyperAI超神经
TVM神经网络人工智能深度学习TVMGPUNVIDIA语言模型
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:LianminZheng针对特定设备和工作负载的自动调优对于获得最佳性能至关重要。本文介绍如何使用auto-scheduler为NVIDIAGPU调优整个神经网络。为自动调优神经网络,需要将网络划分为小的子图并独立调优。每个子图被视为
- flash_attn安装
壶小旭
PythonLinuxpython
flash_attn安装1.cuda-nvcc安装https://anaconda.org/nvidia/cuda-nvcc2.torch安装#https://pytorch.org/#找到对应cuda版本的torch进行安装pip3installtorchtorchvisiontorchaudio--index-urlhttps://download.pytorch.org/whl/cu1213
- PaddleOCR环境搭建(记录)
江木27
PaddleOCRpaddle
安装环境(Linux)如果是win系统有一些小的不同安装wget,解压后将wget.exe复制到C:\Windows\System32下如遇到错误Couldnotlocatezlibwapi.dll.Pleasemakesureitisinyourlibrarypath!需nvidia下载zlib包即C:\ProgramFiles\NVIDIAGPUComputingToolkit\CUDA\v1
- RTX 3090图形处理巅峰性能解析
智能计算研究中心
其他
内容概要作为NVIDIA面向专业创作者与发烧级玩家的旗舰产品,RTX3090重新定义了图形处理的性能边界。本文将以Ampere架构的技术演进为切入点,系统性解构该显卡在显存配置、运算单元协作及图像处理技术方面的创新设计。通过对比测试数据与工程原理分析,重点探讨24GBGDDR6X显存在8K分辨率场景下的带宽利用率,以及10496个CUDA核心在光线追踪与深度学习超采样(DLSS)任务中的动态负载分
- RTX 4090图形架构性能突破实测
智能计算研究中心
其他
内容概要作为NVIDIA新一代旗舰显卡,RTX4090基于AdaLovelace架构实现了硬件设计与软件优化的双重突破。本文将从核心架构革新、多分辨率场景性能表现及能效管理技术三大维度展开分析。首先解析第三代RTCore与第四代TensorCore的结构升级,阐述其如何通过着色器执行重排序(SER)技术提升光线追踪效率;其次,基于4K分辨率下的《赛博朋克2077》《瘟疫传说:安魂曲》等光追游戏实测
- 第G9周:ACGAN理论与实战
OreoCC
GAN
>-**本文为[365天深度学习训练营]中的学习记录博客**>-**原作者:[K同学啊]**本人往期文章可查阅:深度学习总结我的环境:语言环境:Python3.11编译器:PyCharm深度学习环境:Pytorchtorch==2.0.0+cu118torchvision==0.18.1+cu118显卡:NVIDIAGeForceGTX1660论文地址:ConditionalImageSynthe
- ubuntu多版本cuda如何指定cuda版本
slience_me
服务器linuxubuntulinux运维
本文作者:slience_meubuntu多版本cuda如何指定cuda版本文章目录ubuntu多版本cuda如何指定cuda版本1.关于cuda设置1.1查看当前安装的CUDA版本1.2下载并安装所需的CUDA版本1.3设置环境变量1.4验证切换1.5安装对应的NVIDIA驱动程序2.设置环境变量2.1打开终端2.2编辑`~/.bashrc`或`~/.zshrc`2.3添加环境变量2.4保存并退
- 显卡3050ti等安培架构的GPU安装paddlepaddle
社会闲散人员中的代码爱好者
python环境搭建python人工智能深度学习
3050ti等安培架构的GPU安装paddlepaddle官网原话如果您使用的是安培架构的GPU,推荐使用CUDA11.2如果您使用的是非安培架构的GPU,推荐使用CUDA10.2,性能更优其他配套确定软件版本后,到官网下载对应版本的软件CUDA:CUDAToolkitArchive|NVIDIADevelopercuDNN:cuDNNArchive|NVIDIADeveloper这里需要下载CU
- 简单介绍 NVIDIA推出的图形处理单元(GPU)架构“安培架构“
神仙约架
人工智能架构安培安培架构NVIDIA
概念"安培架构"(AmpereArchitecture)是NVIDIA推出的一款图形处理单元(GPU)架构,它是继图灵架构之后的下一代产品。安培架构最初在2020年发布,以其高性能和高效率而闻名,广泛应用于游戏、专业视觉、数据中心、人工智能(AI)和自动驾驶等领域。特点安培架构的主要特点包括:1.更高的性能和效率-安培架构通过改进的执行单元和更高的时钟频率,提供了比前代图灵架构更高的性能和能效。2
- java杨辉三角
3213213333332132
java基础
package com.algorithm;
/**
* @Description 杨辉三角
* @author FuJianyong
* 2015-1-22上午10:10:59
*/
public class YangHui {
public static void main(String[] args) {
//初始化二维数组长度
int[][] y
- 《大话重构》之大布局的辛酸历史
白糖_
重构
《大话重构》中提到“大布局你伤不起”,如果企图重构一个陈旧的大型系统是有非常大的风险,重构不是想象中那么简单。我目前所在公司正好对产品做了一次“大布局重构”,下面我就分享这个“大布局”项目经验给大家。
背景
公司专注于企业级管理产品软件,企业有大中小之分,在2000年初公司用JSP/Servlet开发了一套针对中
- 电驴链接在线视频播放源码
dubinwei
源码电驴播放器视频ed2k
本项目是个搜索电驴(ed2k)链接的应用,借助于磁力视频播放器(官网:
http://loveandroid.duapp.com/ 开放平台),可以实现在线播放视频,也可以用迅雷或者其他下载工具下载。
项目源码:
http://git.oschina.net/svo/Emule,动态更新。也可从附件中下载。
项目源码依赖于两个库项目,库项目一链接:
http://git.oschina.
- Javascript中函数的toString()方法
周凡杨
JavaScriptjstoStringfunctionobject
简述
The toString() method returns a string representing the source code of the function.
简译之,Javascript的toString()方法返回一个代表函数源代码的字符串。
句法
function.
- struts处理自定义异常
g21121
struts
很多时候我们会用到自定义异常来表示特定的错误情况,自定义异常比较简单,只要分清是运行时异常还是非运行时异常即可,运行时异常不需要捕获,继承自RuntimeException,是由容器自己抛出,例如空指针异常。
非运行时异常继承自Exception,在抛出后需要捕获,例如文件未找到异常。
此处我们用的是非运行时异常,首先定义一个异常LoginException:
/**
* 类描述:登录相
- Linux中find常见用法示例
510888780
linux
Linux中find常见用法示例
·find path -option [ -print ] [ -exec -ok command ] {} \;
find命令的参数;
- SpringMVC的各种参数绑定方式
Harry642
springMVC绑定表单
1. 基本数据类型(以int为例,其他类似):
Controller代码:
@RequestMapping("saysth.do")
public void test(int count) {
}
表单代码:
<form action="saysth.do" method="post&q
- Java 获取Oracle ROWID
aijuans
javaoracle
A ROWID is an identification tag unique for each row of an Oracle Database table. The ROWID can be thought of as a virtual column, containing the ID for each row.
The oracle.sql.ROWID class i
- java获取方法的参数名
antlove
javajdkparametermethodreflect
reflect.ClassInformationUtil.java
package reflect;
import javassist.ClassPool;
import javassist.CtClass;
import javassist.CtMethod;
import javassist.Modifier;
import javassist.bytecode.CodeAtt
- JAVA正则表达式匹配 查找 替换 提取操作
百合不是茶
java正则表达式替换提取查找
正则表达式的查找;主要是用到String类中的split();
String str;
str.split();方法中传入按照什么规则截取,返回一个String数组
常见的截取规则:
str.split("\\.")按照.来截取
str.
- Java中equals()与hashCode()方法详解
bijian1013
javasetequals()hashCode()
一.equals()方法详解
equals()方法在object类中定义如下:
public boolean equals(Object obj) {
return (this == obj);
}
很明显是对两个对象的地址值进行的比较(即比较引用是否相同)。但是我们知道,String 、Math、I
- 精通Oracle10编程SQL(4)使用SQL语句
bijian1013
oracle数据库plsql
--工资级别表
create table SALGRADE
(
GRADE NUMBER(10),
LOSAL NUMBER(10,2),
HISAL NUMBER(10,2)
)
insert into SALGRADE values(1,0,100);
insert into SALGRADE values(2,100,200);
inser
- 【Nginx二】Nginx作为静态文件HTTP服务器
bit1129
HTTP服务器
Nginx作为静态文件HTTP服务器
在本地系统中创建/data/www目录,存放html文件(包括index.html)
创建/data/images目录,存放imags图片
在主配置文件中添加http指令
http {
server {
listen 80;
server_name
- kafka获得最新partition offset
blackproof
kafkapartitionoffset最新
kafka获得partition下标,需要用到kafka的simpleconsumer
import java.util.ArrayList;
import java.util.Collections;
import java.util.Date;
import java.util.HashMap;
import java.util.List;
import java.
- centos 7安装docker两种方式
ronin47
第一种是采用yum 方式
yum install -y docker
- java-60-在O(1)时间删除链表结点
bylijinnan
java
public class DeleteNode_O1_Time {
/**
* Q 60 在O(1)时间删除链表结点
* 给定链表的头指针和一个结点指针(!!),在O(1)时间删除该结点
*
* Assume the list is:
* head->...->nodeToDelete->mNode->nNode->..
- nginx利用proxy_cache来缓存文件
cfyme
cache
user zhangy users;
worker_processes 10;
error_log /var/vlogs/nginx_error.log crit;
pid /var/vlogs/nginx.pid;
#Specifies the value for ma
- [JWFD开源工作流]JWFD嵌入式语法分析器负号的使用问题
comsci
嵌入式
假如我们需要用JWFD的语法分析模块定义一个带负号的方程式,直接在方程式之前添加负号是不正确的,而必须这样做:
string str01 = "a=3.14;b=2.71;c=0;c-((a*a)+(b*b))"
定义一个0整数c,然后用这个整数c去
- 如何集成支付宝官方文档
dai_lm
android
官方文档下载地址
https://b.alipay.com/order/productDetail.htm?productId=2012120700377310&tabId=4#ps-tabinfo-hash
集成的必要条件
1. 需要有自己的Server接收支付宝的消息
2. 需要先制作app,然后提交支付宝审核,通过后才能集成
调试的时候估计会真的扣款,请注意
- 应该在什么时候使用Hadoop
datamachine
hadoop
原帖地址:http://blog.chinaunix.net/uid-301743-id-3925358.html
存档,某些观点与我不谋而合,过度技术化不可取,且hadoop并非万能。
--------------------------------------------万能的分割线--------------------------------
有人问我,“你在大数据和Hado
- 在GridView中对于有外键的字段使用关联模型进行搜索和排序
dcj3sjt126com
yii
在GridView中使用关联模型进行搜索和排序
首先我们有两个模型它们直接有关联:
class Author extends CActiveRecord {
...
}
class Post extends CActiveRecord {
...
function relations() {
return array(
'
- 使用NSString 的格式化大全
dcj3sjt126com
Objective-C
格式定义The format specifiers supported by the NSString formatting methods and CFString formatting functions follow the IEEE printf specification; the specifiers are summarized in Table 1. Note that you c
- 使用activeX插件对象object滚动有重影
蕃薯耀
activeX插件滚动有重影
使用activeX插件对象object滚动有重影 <object style="width:0;" id="abc" classid="CLSID:D3E3970F-2927-9680-BBB4-5D0889909DF6" codebase="activex/OAX339.CAB#
- SpringMVC4零配置
hanqunfeng
springmvc4
基于Servlet3.0规范和SpringMVC4注解式配置方式,实现零xml配置,弄了个小demo,供交流讨论。
项目说明如下:
1.db.sql是项目中用到的表,数据库使用的是oracle11g
2.该项目使用mvn进行管理,私服为自搭建nexus,项目只用到一个第三方 jar,就是oracle的驱动;
3.默认项目为零配置启动,如果需要更改启动方式,请
- 《开源框架那点事儿16》:缓存相关代码的演变
j2eetop
开源框架
问题引入
上次我参与某个大型项目的优化工作,由于系统要求有比较高的TPS,因此就免不了要使用缓冲。
该项目中用的缓冲比较多,有MemCache,有Redis,有的还需要提供二级缓冲,也就是说应用服务器这层也可以设置一些缓冲。
当然去看相关实现代代码的时候,大致是下面的样子。
[java]
view plain
copy
print
?
public vo
- AngularJS浅析
kvhur
JavaScript
概念
AngularJS is a structural framework for dynamic web apps.
了解更多详情请见原文链接:http://www.gbtags.com/gb/share/5726.htm
Directive
扩展html,给html添加声明语句,以便实现自己的需求。对于页面中html元素以ng为前缀的属性名称,ng是angular的命名空间
- 架构师之jdk的bug排查(一)---------------split的点号陷阱
nannan408
split
1.前言.
jdk1.6的lang包的split方法是有bug的,它不能有效识别A.b.c这种类型,导致截取长度始终是0.而对于其他字符,则无此问题.不知道官方有没有修复这个bug.
2.代码
String[] paths = "object.object2.prop11".split("'");
System.ou
- 如何对10亿数据量级的mongoDB作高效的全表扫描
quentinXXZ
mongodb
本文链接:
http://quentinXXZ.iteye.com/blog/2149440
一、正常情况下,不应该有这种需求
首先,大家应该有个概念,标题中的这个问题,在大多情况下是一个伪命题,不应该被提出来。要知道,对于一般较大数据量的数据库,全表查询,这种操作一般情况下是不应该出现的,在做正常查询的时候,如果是范围查询,你至少应该要加上limit。
说一下,
- C语言算法之水仙花数
qiufeihu
c算法
/**
* 水仙花数
*/
#include <stdio.h>
#define N 10
int main()
{
int x,y,z;
for(x=1;x<=N;x++)
for(y=0;y<=N;y++)
for(z=0;z<=N;z++)
if(x*100+y*10+z == x*x*x
- JSP指令
wyzuomumu
jsp
jsp指令的一般语法格式: <%@ 指令名 属性 =”值 ” %>
常用的三种指令: page,include,taglib
page指令语法形式: <%@ page 属性 1=”值 1” 属性 2=”值 2”%>
include指令语法形式: <%@include file=”relative url”%> (jsp可以通过 include